Switch to: References

Add citations

You must login to add citations.
  1. On Cofinal Submodels and Elementary Interstices.Roman Kossak & James H. Schmerl - 2012 - Notre Dame Journal of Formal Logic 53 (3):267-287.
    We prove a number of results concerning the variety of first-order theories and isomorphism types of pairs of the form $(N,M)$ , where $N$ is a countable recursively saturated model of Peano Arithmetic and $M$ is its cofinal submodel. We identify two new isomorphism invariants for such pairs. In the strongest result we obtain continuum many theories of such pairs with the fixed greatest common initial segment of $N$ and $M$ and fixed lattice of interstructures $K$ , such that $M\prec (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Four Problems Concerning Recursively Saturated Models of Arithmetic.Roman Kossak - 1995 - Notre Dame Journal of Formal Logic 36 (4):519-530.
    The paper presents four open problems concerning recursively saturated models of Peano Arithmetic. One problems concerns a possible converse to Tarski's undefinability of truth theorem. The other concern elementary cuts in countable recursively saturated models, extending automorphisms of countable recursively saturated models, and Jonsson models of PA. Some partial answers are given.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On two questions concerning the automorphism groups of countable recursively saturated models of PA.Roman Kossak & Nicholas Bamber - 1996 - Archive for Mathematical Logic 36 (1):73-79.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Arithmetically Saturated Models of Arithmetic.Roman Kossak & James H. Schmerl - 1995 - Notre Dame Journal of Formal Logic 36 (4):531-546.
    The paper presents an outline of the general theory of countable arithmetically saturated models of PA and some of its applications. We consider questions concerning the automorphism group of a countable recursively saturated model of PA. We prove new results concerning fixed point sets, open subgroups, and the cofinality of the automorphism group. We also prove that the standard system of a countable arithmetically saturated model of PA is determined by the lattice of its elementary substructures.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Automorphisms of Countable Short Recursively Saturated Models of PA.Erez Shochat - 2008 - Notre Dame Journal of Formal Logic 49 (4):345-360.
    A model of Peano Arithmetic is short recursively saturated if it realizes all its bounded finitely realized recursive types. Short recursively saturated models of $\PA$ are exactly the elementary initial segments of recursively saturated models of $\PA$. In this paper, we survey and prove results on short recursively saturated models of $\PA$ and their automorphisms. In particular, we investigate a certain subgroup of the automorphism group of such models. This subgroup, denoted $G|_{M(a)}$, contains all the automorphisms of a countable short (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Galois correspondence for countable short recursively saturated models of PA.Erez Shochat - 2010 - Mathematical Logic Quarterly 56 (3):228-238.
    In this paper we investigate the properties of automorphism groups of countable short recursively saturated models of arithmetic. In particular, we show that Kaye's Theorem concerning the closed normal subgroups of automorphism groups of countable recursively saturated models of arithmetic applies to automorphism groups of countable short recursively saturated models as well. That is, the closed normal subgroups of the automorphism group of a countable short recursively saturated model of PA are exactly the stabilizers of the invariant cuts of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Interstitial and pseudo gaps in models of Peano Arithmetic.Ermek S. Nurkhaidarov - 2010 - Mathematical Logic Quarterly 56 (2):198-204.
    In this paper we study the automorphism groups of models of Peano Arithmetic. Kossak, Kotlarski, and Schmerl [9] shows that the stabilizer of an unbounded element a of a countable recursively saturated model of Peano Arithmetic M is a maximal subgroup of Aut if and only if the type of a is selective. We extend this result by showing that if M is a countable arithmetically saturated model of Peano Arithmetic, Ω ⊂ M is a very good interstice, and a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Automorphisms of Saturated and Boundedly Saturated Models of Arithmetic.Ermek S. Nurkhaidarov & Erez Shochat - 2011 - Notre Dame Journal of Formal Logic 52 (3):315-329.
    We discuss automorphisms of saturated models of PA and boundedly saturated models of PA. We show that Smoryński's Lemma and Kaye's Theorem are not only true for countable recursively saturated models of PA but also true for all boundedly saturated models of PA with slight modifications.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Closed Normal Subgroups of the Automorphism Group of a Saturated Model of Peano Arithmetic.Ermek S. Nurkhaidarov & Erez Shochat - 2016 - Notre Dame Journal of Formal Logic 57 (1):127-139.
    In this paper we discuss automorphism groups of saturated models and boundedly saturated models of $\mathsf{PA}$. We show that there are saturated models of $\mathsf{PA}$ of the same cardinality with nonisomorphic automorphism groups. We then show that every saturated model of $\mathsf{PA}$ has short saturated elementary cuts with nonisomorphic automorphism groups.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Decoding in the automorphism group of a recursively saturated model of arithmetic.Ermek Nurkhaidarov - 2015 - Mathematical Logic Quarterly 61 (3):179-188.
    The main result of this paper partially answers a question raised in about the existence of countable just recursively saturated models of Peano Arithmetic with non‐isomorphic automorphism groups. We show the existence of infinitely many countable just recursively saturated models of Peano Arithmetic such that their automorphism groups are not topologically isomorphic. We also discuss maximal open subgroups of the automorphism group of a countable arithmetically saturated model of in a very good interstice.
    Download  
     
    Export citation  
     
    Bookmark  
  • Infinitary definitions of equivalence relations in models of PA.Richard Kaye - 1997 - Annals of Pure and Applied Logic 89 (1):37-43.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Automorphisms of Countable Recursively Saturated Models of PA: A Survey.Henryk Kotlarski - 1995 - Notre Dame Journal of Formal Logic 36 (4):505-518.
    We give a survey of automorphisms of countable recursively saturated models of Peano Arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Automorphisms of Models of True Arithmetic: Recognizing Some Basic Open Subgroups.Henryk Kotlarski & Richard Kaye - 1994 - Notre Dame Journal of Formal Logic 35 (1):1-14.
    Let M be a countable recursively saturated model of Th(), and let GAut(M), considered as a topological group. We examine connections between initial segments of M and subgroups of G. In particular, for each of the following classes of subgroups HG, we give characterizations of the class of terms of the topological group structure of H as a subgroup of G. (a) for some (b) for some (c) for some (d) for some (Here, M(a) denotes the smallest M containing a, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Strongly maximal subgroups determined by elements in interstices.Teresa Bigorajska - 2003 - Mathematical Logic Quarterly 49 (1):101-108.
    Continuing the earlier research in [1] and [4] we work out a class of interstices in countable arithmetically saturated models of PA in which selective types are realized and a class of interstices in which 2-indiscernible types are realized.
    Download  
     
    Export citation  
     
    Bookmark   2 citations