Switch to: References

Add citations

You must login to add citations.
  1. The Kuznetsov-Gerčiu and Rieger-Nishimura logics.Guram Bezhanishvili, Nick Bezhanishvili & Dick de Jongh - 2008 - Logic and Logical Philosophy 17 (1-2):73-110.
    We give a systematic method of constructing extensions of the Kuznetsov-Gerčiu logic KG without the finite model property (fmp for short), and show that there are continuum many such. We also introduce a new technique of gluing of cyclic intuitionistic descriptive frames and give a new simple proof of Gerčiu’s result [9, 8] that all extensions of the Rieger-Nishimura logic RN have the fmp. Moreover, we show that each extension of RN has the poly-size model property, thus improving on [9]. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Frame Based Formulas for Intermediate Logics.Nick Bezhanishvili - 2008 - Studia Logica 90 (2):139-159.
    In this paper we define the notion of frame based formulas. We show that the well-known examples of formulas arising from a finite frame, such as the Jankov-de Jongh formulas, subframe formulas and cofinal subframe formulas, are all particular cases of the frame based formulas. We give a criterion for an intermediate logic to be axiomatizable by frame based formulas and use this criterion to obtain a simple proof that every locally tabular intermediate logic is axiomatizable by Jankov-de Jongh formulas. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Canonical formulas for wk4.Guram Bezhanishvili & Nick Bezhanishvili - 2012 - Review of Symbolic Logic 5 (4):731-762.
    We generalize the theory of canonical formulas for K4, the logic of transitive frames, to wK4, the logic of weakly transitive frames. Our main result establishes that each logic over wK4 is axiomatizable by canonical formulas, thus generalizing Zakharyaschev’s theorem for logics over K4. The key new ingredients include the concepts of transitive and strongly cofinal subframes of weakly transitive spaces. This yields, along with the standard notions of subframe and cofinal subframe logics, the new notions of transitive subframe and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • FMP-Ensuring Logics, RA-Ensuring Logics and FA-Ensuring Logics in $$\text {NExtK4.3}$$.Ming Xu - 2023 - Studia Logica 111 (6):899-946.
    This paper studies modal logics whose extensions all have the finite model property, those whose extensions are all recursively axiomatizable, and those whose extensions are all finitely axiomatizable. We call such logics FMP-ensuring, RA-ensuring and FA-ensuring respectively, and prove necessary and sufficient conditions of such logics in $$\mathsf {NExtK4.3}$$. Two infinite descending chains $$\{{\textbf{S}}_{k}\}_{k\in \omega }$$ and $$\{{\textbf{S}} _{k}^{*}\}_{k\in \omega }$$ of logics are presented, in terms of which the necessary and sufficient conditions are formulated as follows: A logic in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • All Normal Extensions of S5-squared Are Finitely Axiomatizable.Nick Bezhanishvili & Ian Hodkinson - 2004 - Studia Logica 78 (3):443-457.
    We prove that every normal extension of the bi-modal system S52 is finitely axiomatizable and that every proper normal extension has NP-complete satisfiability problem.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hereditarily Structurally Complete Intermediate Logics: Citkin’s Theorem Via Duality.Nick Bezhanishvili & Tommaso Moraschini - 2023 - Studia Logica 111 (2):147-186.
    A deductive system is said to be structurally complete if its admissible rules are derivable. In addition, it is called hereditarily structurally complete if all its extensions are structurally complete. Citkin (1978) proved that an intermediate logic is hereditarily structurally complete if and only if the variety of Heyting algebras associated with it omits five finite algebras. Despite its importance in the theory of admissible rules, a direct proof of Citkin’s theorem is not widely accessible. In this paper we offer (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation