Switch to: References

Add citations

You must login to add citations.
  1. Hardness assumptions in the foundations of theoretical computer science.Jan Krajíček - 2005 - Archive for Mathematical Logic 44 (6):667-675.
    Download  
     
    Export citation  
     
    Bookmark  
  • Dual weak pigeonhole principle, pseudo-surjective functions, and provability of circuit lower bounds.Jan Krajíček - 2004 - Journal of Symbolic Logic 69 (1):265-286.
    This article is a continuation of our search for tautologies that are hard even for strong propositional proof systems like EF, cf. [Kra-wphp,Kra-tau]. The particular tautologies we study, the τ-formulas, are obtained from any.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the correspondence between arithmetic theories and propositional proof systems – a survey.Olaf Beyersdorff - 2009 - Mathematical Logic Quarterly 55 (2):116-137.
    The purpose of this paper is to survey the correspondence between bounded arithmetic and propositional proof systems. In addition, it also contains some new results which have appeared as an extended abstract in the proceedings of the conference TAMC 2008 [11].Bounded arithmetic is closely related to propositional proof systems; this relation has found many fruitful applications. The aim of this paper is to explain and develop the general correspondence between propositional proof systems and arithmetic theories, as introduced by Krajíček and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the proof complexity of the nisan–wigderson generator based on a hard np ∩ conp function.Jan Krajíček - 2011 - Journal of Mathematical Logic 11 (1):11-27.
    Let g be a map defined as the Nisan–Wigderson generator but based on an NP ∩ coNP -function f. Any string b outside the range of g determines a propositional tautology τb expressing this fact. Razborov [27] has conjectured that if f is hard on average for P/poly then these tautologies have no polynomial size proofs in the Extended Frege system EF. We consider a more general Statement that the tautologies have no polynomial size proofs in any propositional proof system. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations