Switch to: References

Add citations

You must login to add citations.
  1. The incompleteness of s4 ⊕ s4 for the product space R × R.Philip Kremer - unknown
    Shehtman introduced bimodal logics of the products of Kripke frames, thereby introducing frame products of unimodal logics. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalize this idea to the bimodal logics of the products of topological spaces, thereby introducing topological products of unimodal logics. In particular, they show that the topological product of S4 and S4 is S4 ⊕ S4, i.e., the fusion of S4 and S4: this logic is strictly weaker than the frame product S4 × S4. Indeed, van (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Topological-Frame Products of Modal Logics.Philip Kremer - 2018 - Studia Logica 106 (6):1097-1122.
    The simplest bimodal combination of unimodal logics \ and \ is their fusion, \, axiomatized by the theorems of \ for \ and of \ for \, and the rules of modus ponens, necessitation for \ and for \, and substitution. Shehtman introduced the frame product \, as the logic of the products of certain Kripke frames: these logics are two-dimensional as well as bimodal. Van Benthem, Bezhanishvili, ten Cate and Sarenac transposed Shehtman’s idea to the topological semantics and introduced (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Matching Topological and Frame Products of Modal Logics.Philip Kremer - 2016 - Studia Logica 104 (3):487-502.
    The simplest combination of unimodal logics \ into a bimodal logic is their fusion, \, axiomatized by the theorems of \. Shehtman introduced combinations that are not only bimodal, but two-dimensional: he defined 2-d Cartesian products of 1-d Kripke frames, using these Cartesian products to define the frame product \. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalized Shehtman’s idea and introduced the topological product \, using Cartesian products of topological spaces rather than of Kripke frames. Frame products have been (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On neighbourhood product of some Horn axiomatizable logics.Andrey Kudinov - 2018 - Logic Journal of the IGPL 26 (3):316-338.
    Download  
     
    Export citation  
     
    Bookmark   1 citation