Switch to: References

Add citations

You must login to add citations.
  1. Forcing with adequate sets of models as side conditions.John Krueger - 2017 - Mathematical Logic Quarterly 63 (1-2):124-149.
    We present a general framework for forcing on ω2 with finite conditions using countable models as side conditions. This framework is based on a method of comparing countable models as being membership related up to a large initial segment. We give several examples of this type of forcing, including adding a function on ω2, adding a nonreflecting stationary subset of, and adding an ω1‐Kurepa tree.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mitchell-inspired forcing, with small working parts and collections of models of uniform size as side conditions, and gap-one simplified morasses.Charles Morgan - 2022 - Journal of Symbolic Logic 87 (1):392-415.
    We show that a $$ -simplified morass can be added by a forcing with working parts of size smaller than $\kappa $. This answers affirmatively the question, asked independently by Shelah and Velleman in the early 1990s, of whether it is possible to do so.Our argument use a modification of a technique of Mitchell’s for adding objects of size $\omega _2$ in which collections of models – all of equal, countable size – are used as side conditions. In our modification, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Adding a club with finite conditions, Part II.John Krueger - 2015 - Archive for Mathematical Logic 54 (1-2):161-172.
    We define a forcing poset which adds a club subset of a given fat stationary set S⊆ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subseteq \omega_2}$$\end{document} with finite conditions, using S-adequate sets of models as side conditions. This construction, together with the general amalgamation results concerning S-adequate sets on which it is based, is substantially shorter and simpler than our original version in Krueger :119–136, 2014).
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mitchell's theorem revisited.Thomas Gilton & John Krueger - 2017 - Annals of Pure and Applied Logic 168 (5):922-1016.
    Download  
     
    Export citation  
     
    Bookmark   1 citation