Switch to: References

Add citations

You must login to add citations.
  1. Abstract Elementary Classes with Löwenheim-Skolem Number Cofinal with ω.Gregory M. Johnson - 2010 - Notre Dame Journal of Formal Logic 51 (3):361-371.
    In this paper we study abstract elementary classes with Löwenheim-Skolem number $\kappa$ , where $\kappa$ is cofinal with $\omega$ , which have finite character. We generalize results obtained by Kueker for $\kappa=\omega$ . In particular, we show that $\mathbb{K}$ is closed under $L_{\infty,\kappa}$ -elementary equivalence and obtain sufficient conditions for $\mathbb{K}$ to be $L_{\infty,\kappa}$ -axiomatizable. In addition, we provide an example to illustrate that if $\kappa$ is uncountable regular then $\mathbb{K}$ is not closed under $L_{\infty,\kappa}$ -elementary equivalence.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)On Formalism Freeness: Implementing Gödel's 1946 Princeton Bicentennial Lecture.Juliette Kennedy - 2013 - Bulletin of Symbolic Logic 19 (3):351-393.
    In this paper we isolate a notion that we call “formalism freeness” from Gödel's 1946 Princeton Bicentennial Lecture, which asks for a transfer of the Turing analysis of computability to the cases of definability and provability. We suggest an implementation of Gödel's idea in the case of definability, via versions of the constructible hierarchy based on fragments of second order logic. We also trace the notion of formalism freeness in the very wide context of developments in mathematical logic in the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Almost galois ω-stable classes.John T. Baldwin, Paul B. Larson & Saharon Shelah - 2015 - Journal of Symbolic Logic 80 (3):763-784.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Iterated elementary embeddings and the model theory of infinitary logic.John T. Baldwin & Paul B. Larson - 2016 - Annals of Pure and Applied Logic 167 (3):309-334.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Infinitary stability theory.Sebastien Vasey - 2016 - Archive for Mathematical Logic 55 (3-4):567-592.
    We introduce a new device in the study of abstract elementary classes : Galois Morleyization, which consists in expanding the models of the class with a relation for every Galois type of length less than a fixed cardinal κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}. We show:Theorem 0.1 An AEC K is fully \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa = \beth _{\kappa } > \text {LS}$$\end{document}. If K is Galois stable, then the (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • A Note on the Axioms for Zilber’s Pseudo-Exponential Fields.Jonathan Kirby - 2013 - Notre Dame Journal of Formal Logic 54 (3-4):509-520.
    We show that Zilber’s conjecture that complex exponentiation is isomorphic to his pseudo-exponentiation follows from the a priori simpler conjecture that they are elementarily equivalent. An analysis of the first-order types in pseudo-exponentiation leads to a description of the elementary embeddings, and the result that pseudo-exponential fields are precisely the models of their common first-order theory which are atomic over exponential transcendence bases. We also show that the class of all pseudo-exponential fields is an example of a nonfinitary abstract elementary (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Categoricity transfer in simple finitary abstract elementary classes.Tapani Hyttinen & Meeri Kesälä - 2011 - Journal of Symbolic Logic 76 (3):759 - 806.
    We continue our study of finitary abstract elementary classes, defined in [7]. In this paper, we prove a categoricity transfer theorem for a case of simple finitary AECs. We introduce the concepts of weak κ-categoricity and f-primary models to the framework of א₀-stable simple finitary AECs with the extension property, whereby we gain the following theorem: Let (������, ≼ ������ ) be a simple finitary AEC, weakly categorical in some uncountable κ. Then (������, ≼ ������ ) is weakly categorical in (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Lascar Types and Lascar Automorphisms in Abstract Elementary Classes.Tapani Hyttinen & Meeri Kesälä - 2011 - Notre Dame Journal of Formal Logic 52 (1):39-54.
    We study Lascar strong types and Galois types and especially their relation to notions of type which have finite character. We define a notion of a strong type with finite character, the so-called Lascar type. We show that this notion is stronger than Galois type over countable sets in simple and superstable finitary AECs. Furthermore, we give an example where the Galois type itself does not have finite character in such a class.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Abstract elementary classes and accessible categories.Tibor Beke & Jirí Rosický - 2012 - Annals of Pure and Applied Logic 163 (12):2008-2017.
    We investigate properties of accessible categories with directed colimits and their relationship with categories arising from ShelahʼsElementary Classes. We also investigate ranks of objects in accessible categories, and the effect of accessible functors on ranks.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Classification theory for accessible categories.M. Lieberman & J. Rosický - 2016 - Journal of Symbolic Logic 81 (1):151-165.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Coxeter Groups and Abstract Elementary Classes: The Right-Angled Case.Tapani Hyttinen & Gianluca Paolini - 2019 - Notre Dame Journal of Formal Logic 60 (4):707-731.
    We study classes of right-angled Coxeter groups with respect to the strong submodel relation of a parabolic subgroup. We show that the class of all right-angled Coxeter groups is not smooth and establish some general combinatorial criteria for such classes to be abstract elementary classes (AECs), for them to be finitary, and for them to be tame. We further prove two combinatorial conditions ensuring the strong rigidity of a right-angled Coxeter group of arbitrary rank. The combination of these results translates (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatizing AECs and applications.Samson Leung - 2023 - Annals of Pure and Applied Logic 174 (5):103248.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpreting groups and fields in simple, finitary AECs.Tapani Hyttinen & Meeri Kesälä - 2012 - Annals of Pure and Applied Logic 163 (9):1141-1162.
    Download  
     
    Export citation  
     
    Bookmark   1 citation