Switch to: References

Add citations

You must login to add citations.
  1. Friedberg numberings in the Ershov hierarchy.Serikzhan A. Badaev, Mustafa Manat & Andrea Sorbi - 2015 - Archive for Mathematical Logic 54 (1-2):59-73.
    We show that for every ordinal notation ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\xi}$$\end{document} of a nonzero computable ordinal, there exists a Σξ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^{-1}_\xi}$$\end{document}—computable family which up to equivalence has exactly one Friedberg numbering, which does not induce the least element in the corresponding Rogers semilattice.
    Download  
     
    Export citation  
     
    Bookmark