Switch to: References

Add citations

You must login to add citations.
  1. Indestructibility of ideals and MAD families.David Chodounský & Osvaldo Guzmán - 2021 - Annals of Pure and Applied Logic 172 (5):102905.
    In this survey paper we collect several known results on destroying tall ideals on countable sets and maximal almost disjoint families with forcing. In most cases we provide streamlined proofs of the presented results. The paper contains results of many authors as well as a preview of results of a forthcoming paper of Brendle, Guzmán, Hrušák, and Raghavan.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Covering properties of $$omega $$ω -mad families.Leandro Aurichi & Lyubomyr Zdomskyy - 2020 - Archive for Mathematical Logic 59 (3-4):445-452.
    We prove that Martin’s Axiom implies the existence of a Cohen-indestructible mad family such that the Mathias forcing associated to its filter adds dominating reals, while \ is consistent with the negation of this statement as witnessed by the Laver model for the consistency of Borel’s conjecture.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (15 other versions)2005 Summer Meeting of the Association for Symbolic Logic. Logic Colloquium '05.Stan S. Wainer - 2006 - Bulletin of Symbolic Logic 12 (2):310-361.
    Download  
     
    Export citation  
     
    Bookmark  
  • Partition Forcing and Independent Families.Jorge A. Cruz-Chapital, Vera Fischer, Osvaldo Guzmán & Jaroslav Šupina - 2023 - Journal of Symbolic Logic 88 (4):1590-1612.
    We show that Miller partition forcing preserves selective independent families and P-points, which implies the consistency of $\mbox {cof}(\mathcal {N})=\mathfrak {a}=\mathfrak {u}=\mathfrak {i}<\mathfrak {a}_T=\omega _2$. In addition, we show that Shelah’s poset for destroying the maximality of a given maximal ideal preserves tight mad families and so we establish the consistency of $\mbox {cof}(\mathcal {N})=\mathfrak {a}=\mathfrak {i}=\omega _1<\mathfrak {u}=\mathfrak {a}_T=\omega _2$.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Splitting families and forcing.Miloš S. Kurilić - 2007 - Annals of Pure and Applied Logic 145 (3):240-251.
    According to [M.S. Kurilić, Cohen-stable families of subsets of the integers, J. Symbolic Logic 66 257–270], adding a Cohen real destroys a splitting family on ω if and only if is isomorphic to a splitting family on the set of rationals, , whose elements have nowhere dense boundaries. Consequently, implies the Cohen-indestructibility of . Using the methods developed in [J. Brendle, S. Yatabe, Forcing indestructibility of MAD families, Ann. Pure Appl. Logic 132 271–312] the stability of splitting families in several (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mad families, forcing and the Suslin Hypothesis.Miloš S. Kurilić - 2005 - Archive for Mathematical Logic 44 (4):499-512.
    Let κ be a regular cardinal and P a partial ordering preserving the regularity of κ. If P is (κ-Baire and) of density κ, then there is a mad family on κ killed in all generic extensions (if and) only if below each p∈P there exists a κ-sized antichain. In this case a mad family on κ is killed (if and) only if there exists an injection from κ onto a dense subset of Ult(P) mapping the elements of onto nowhere (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Forcing indestructibility of MAD families.Jörg Brendle & Shunsuke Yatabe - 2005 - Annals of Pure and Applied Logic 132 (2):271-312.
    Let A[ω]ω be a maximal almost disjoint family and assume P is a forcing notion. Say A is P-indestructible if A is still maximal in any P-generic extension. We investigate P-indestructibility for several classical forcing notions P. In particular, we provide a combinatorial characterization of P-indestructibility and, assuming a fragment of MA, we construct maximal almost disjoint families which are P-indestructible yet Q-destructible for several pairs of forcing notions . We close with a detailed investigation of iterated Sacks indestructibility.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Katětov Order on Mad Families.Osvaldo Guzmán - 2024 - Journal of Symbolic Logic 89 (2):794-828.
    We continue with the study of the Katětov order on MAD families. We prove that Katětov maximal MAD families exist under $\mathfrak {b=c}$ and that there are no Katětov-top MAD families assuming $\mathfrak {s\leq b}.$ This improves previously known results from the literature. We also answer a problem form Arciga, Hrušák, and Martínez regarding Katětov maximal MAD families.
    Download  
     
    Export citation  
     
    Bookmark  
  • Projective mad families.Sy-David Friedman & Lyubomyr Zdomskyy - 2010 - Annals of Pure and Applied Logic 161 (12):1581-1587.
    Using almost disjoint coding we prove the consistency of the existence of a definable ω-mad family of infinite subsets of ω together with.
    Download  
     
    Export citation  
     
    Bookmark   7 citations