Switch to: References

Add citations

You must login to add citations.
  1. Why Ramify?Harold T. Hodes - 2015 - Notre Dame Journal of Formal Logic 56 (2):379-415.
    This paper considers two reasons that might support Russell’s choice of a ramified-type theory over a simple-type theory. The first reason is the existence of purported paradoxes that can be formulated in any simple-type language, including an argument that Russell considered in 1903. These arguments depend on certain converse-compositional principles. When we take account of Russell’s doctrine that a propositional function is not a constituent of its values, these principles turn out to be too implausible to make these arguments troubling. (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • A constructive examination of a Russell-style ramified type theory.Erik Palmgren - 2018 - Bulletin of Symbolic Logic 24 (1):90-106.
    In this article we examine the natural interpretation of a ramified type hierarchy into Martin-Löf type theory with an infinite sequence of universes. It is shown that under this predicative interpretation some useful special cases of Russell’s reducibility axiom are valid, namely functional reducibility. This is sufficient to make the type hierarchy usable for development of constructive mathematical analysis in the style of Bishop. We present a ramified type theory suitable for this purpose. One may regard the results of this (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Types in logic and mathematics before 1940.Fairouz Kamareddine, Twan Laan & Rob Nederpelt - 2002 - Bulletin of Symbolic Logic 8 (2):185-245.
    In this article, we study the prehistory of type theory up to 1910 and its development between Russell and Whitehead's Principia Mathematica ([71], 1910-1912) and Church's simply typed λ-calculus of 1940. We first argue that the concept of types has always been present in mathematics, though nobody was incorporating them explicitly as such, before the end of the 19th century. Then we proceed by describing how the logical paradoxes entered the formal systems of Frege, Cantor and Peano concentrating on Frege's (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A correspondence between Martin-löf type theory, the ramified theory of types and pure type systems.Fairouz Kamareddine & Twan Laan - 2001 - Journal of Logic, Language and Information 10 (3):375-402.
    In Russell''s Ramified Theory of Types RTT, two hierarchical concepts dominate:orders and types. The use of orders has as a consequencethat the logic part of RTT is predicative.The concept of order however, is almost deadsince Ramsey eliminated it from RTT. This is whywe find Church''s simple theory of types (which uses the type concept without the order one) at the bottom of the Barendregt Cube rather than RTT. Despite the disappearance of orders which have a strong correlation with predicativity, predicative (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation