Switch to: References

Add citations

You must login to add citations.
  1. The Hole Argument in Homotopy Type Theory.James Ladyman & Stuart Presnell - 2020 - Foundations of Physics 50 (4):319-329.
    The Hole Argument is primarily about the meaning of general covariance in general relativity. As such it raises many deep issues about identity in mathematics and physics, the ontology of space–time, and how scientific representation works. This paper is about the application of a new foundational programme in mathematics, namely homotopy type theory, to the Hole Argument. It is argued that the framework of HoTT provides a natural resolution of the Hole Argument. The role of the Univalence Axiom in the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Universes and univalence in homotopy type theory.James Ladyman & Stuart Presnell - 2019 - Review of Symbolic Logic 12 (3):426-455.
    The Univalence axiom, due to Vladimir Voevodsky, is often taken to be one of the most important discoveries arising from the Homotopy Type Theory research programme. It is said by Steve Awodey that Univalence embodies mathematical structuralism, and that Univalence may be regarded as ‘expanding the notion of identity to that of equivalence’. This article explores the conceptual, foundational and philosophical status of Univalence in Homotopy Type Theory. It extends our Types-as-Concepts interpretation of HoTT to Universes, and offers an account (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On gauge symmetries, indiscernibilities, and groupoid-theoretical equalities.Gabriel Catren - 2022 - Studies in History and Philosophy of Science Part A 91 (C):244-261.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Representation and Spacetime: The Hole Argument Revisited.Aboutorab Yaghmaie, Bijan Ahmadi Kakavandi, Saeed Masoumi & Morteza Moniri - 2022 - International Studies in the Philosophy of Science 35 (2):171-188.
    Ladyman and Presnell have recently argued that the Hole argument is naturally resolved when spacetime is represented within homotopy type theory rather than set theory. The core idea behind their proposal is that the argument does not confront us with any indeterminism, since the set-theoretically different representations of spacetime involved in the argument are homotopy type-theoretically identical. In this article, we will offer a new resolution based on ZFC set theory to the argument. It neither relies on a constructive-intuitionistic form (...)
    Download  
     
    Export citation  
     
    Bookmark