Switch to: References

Add citations

You must login to add citations.
  1. -Ultrafilters in the Rational Perfect Set Model.Jonathan Cancino-manríquez - 2024 - Journal of Symbolic Logic 89 (1):175-194.
    We give a new characterization of the cardinal invariant $\mathfrak {d}$ as the minimal cardinality of a family $\mathcal {D}$ of tall summable ideals such that an ultrafilter is rapid if and only if it has non-empty intersection with all the ideals in the family $\mathcal {D}$. On the other hand, we prove that in the Miller model, given any family $\mathcal {D}$ of analytic tall p-ideals such that $\vert \mathcal {D}\vert <\mathfrak {d}$, there is an ultrafilter $\mathcal {U}$ which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lebesgue Measure Zero Modulo Ideals on the Natural Numbers.Viera Gavalová & Diego A. Mejía - forthcoming - Journal of Symbolic Logic:1-31.
    We propose a reformulation of the ideal $\mathcal {N}$ of Lebesgue measure zero sets of reals modulo an ideal J on $\omega $, which we denote by $\mathcal {N}_J$. In the same way, we reformulate the ideal $\mathcal {E}$ generated by $F_\sigma $ measure zero sets of reals modulo J, which we denote by $\mathcal {N}^*_J$. We show that these are $\sigma $ -ideals and that $\mathcal {N}_J=\mathcal {N}$ iff J has the Baire property, which in turn is equivalent to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the length of chains of proper subgroups covering a topological group.Taras Banakh, Dušan Repovš & Lyubomyr Zdomskyy - 2011 - Archive for Mathematical Logic 50 (3-4):411-421.
    We prove that if an ultrafilter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} is not coherent to a Q-point, then each analytic non-σ-bounded topological group G admits an increasing chain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle G_\alpha:\alpha < \mathfrak b(\mathcal L)\rangle}$$\end{document} of its proper subgroups such that: (i) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bigcup_{\alpha}G_\alpha=G}$$\end{document}; and (ii) For every σ-bounded subgroup H of G there exists α such that \documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A long chain of P-points.Borisa Kuzeljevic & Dilip Raghavan - 2018 - Journal of Mathematical Logic 18 (1):1850004.
    The notion of a [Formula: see text]-generic sequence of P-points is introduced in this paper. It is proved assuming the Continuum Hypothesis that for each [Formula: see text], any [Formula: see text]-generic sequence of P-points can be extended to an [Formula: see text]-generic sequence. This shows that the CH implies that there is a chain of P-points of length [Formula: see text] with respect to both Rudin–Keisler and Tukey reducibility. These results answer an old question of Andreas Blass.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ultrafilters, monotone functions and pseudocompactness.M. Hrušák, M. Sanchis & Á Tamariz-Mascarúa - 2005 - Archive for Mathematical Logic 44 (2):131-157.
    In this article we, given a free ultrafilter p on ω, consider the following classes of ultrafilters:(1) T(p) - the set of ultrafilters Rudin-Keisler equivalent to p,(2) S(p)={q ∈ ω*:∃ f ∈ ω ω , strictly increasing, such that q=f β (p)},(3) I(p) - the set of strong Rudin-Blass predecessors of p,(4) R(p) - the set of ultrafilters equivalent to p in the strong Rudin-Blass order,(5) P RB (p) - the set of Rudin-Blass predecessors of p, and(6) P RK (p) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Basis problem for turbulent actions I: Tsirelson submeasures.Ilijas Farah - 2001 - Annals of Pure and Applied Logic 108 (1-3):189-203.
    We use modified Tsirelson's spaces to prove that there is no finite basis for turbulent Polish group actions. This answers a question of Hjorth and Kechris 329–346; Hjorth, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2000, Section 3.4.3).
    Download  
     
    Export citation  
     
    Bookmark   2 citations