Switch to: References

Add citations

You must login to add citations.
  1. Emergent Phenomena in Nature: A Paradox with Theory?Christiaan J. F. van de Ven - 2023 - Foundations of Physics 53 (5):1-23.
    The existence of various physical phenomena stems from the concept called asymptotic emergence, that is, they seem to be exclusively reserved for certain limiting theories. Important examples are spontaneous symmetry breaking (SSB) and phase transitions: these would only occur in the classical or thermodynamic limit of underlying finite quantum systems, since for finite quantum systems, due to the uniqueness of the relevant states, such phenomena are excluded by Theory. In Nature, however, finite quantum systems describing real materials clearly exhibit such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of Quantum Probability - An empiricist study of its formalism and logic.Ronnie Hermens - unknown
    The use of probability theory is widespread in our daily life as well as in scientific theories. In virtually all cases, calculations can be carried out within the framework of classical probability theory. A special exception is given by quantum mechanics, which gives rise to a new probability theory: quantum probability theory. This dissertation deals with the question of how this formalism can be understood from a philosophical and physical perspective. The dissertation is divided into three parts. In the first (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Spontaneous symmetry breaking in quantum systems: Emergence or reduction?Nicolaas P. Landsman - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):379-394.
    Beginning with Anderson, spontaneous symmetry breaking in infinite quantum systems is often put forward as an example of emergence in physics, since in theory no finite system should display it. Even the correspondence between theory and reality is at stake here, since numerous real materials show ssb in their ground states, although they are finite. Thus against what is sometimes called ‘Earman's Principle’, a genuine physical effect seems theoretically recovered only in some idealisation, disappearing as soon as the idealisation is (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Reductive Explanation and the Construction of Quantum Theories.Benjamin H. Feintzeig - 2022 - British Journal for the Philosophy of Science 73 (2):457-486.
    I argue that philosophical issues concerning reductive explanations help constrain the construction of quantum theories with appropriate state spaces. I illustrate this general proposal with two examples of restricting attention to physical states in quantum theories: regular states and symmetry-invariant states. 1Introduction2Background2.1 Physical states2.2 Reductive explanations3The Proposed ‘Correspondence Principle’4Example: Regularity5Example: Symmetry-Invariance6Conclusion: Heuristics and Discovery.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • When Greenberger, Horne and Zeilinger Meet Wigner’s Friend.Gijs Leegwater - 2022 - Foundations of Physics 52 (4):1-17.
    A general argument is presented against relativistic, unitary, single-outcome quantum mechanics. This is achieved by combining the Wigner’s Friend thought experiment with measurements on a Greenberger–Horne–Zeilinger state, and describing the evolution of the quantum state in various inertial frames. Assuming unitary quantum mechanics and single outcomes, the result is that the Born rule must be violated in some inertial frame: in that frame, outcomes are obtained for which no corresponding term exists in the pre-measurement wavefunction.
    Download  
     
    Export citation  
     
    Bookmark   7 citations