Switch to: References

Add citations

You must login to add citations.
  1. Uniformly Bounded Arrays and Mutually Algebraic Structures.Michael C. Laskowski & Caroline A. Terry - 2020 - Notre Dame Journal of Formal Logic 61 (2):265-282.
    We define an easily verifiable notion of an atomic formula having uniformly bounded arrays in a structure M. We prove that if T is a complete L-theory, then T is mutually algebraic if and only if there is some model M of T for which every atomic formula has uniformly bounded arrays. Moreover, an incomplete theory T is mutually algebraic if and only if every atomic formula has uniformly bounded arrays in every model M of T.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Counting Siblings in Universal Theories.Samuel Braunfeld & Michael C. Laskowski - 2022 - Journal of Symbolic Logic 87 (3):1130-1155.
    We show that if a countable structure M in a finite relational language is not cellular, then there is an age-preserving $N \supseteq M$ such that $2^{\aleph _0}$ many structures are bi-embeddable with N. The proof proceeds by a case division based on mutual algebraicity.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mutual algebraicity and cellularity.Samuel Braunfeld & Michael C. Laskowski - 2022 - Archive for Mathematical Logic 61 (5):841-857.
    We prove two results intended to streamline proofs about cellularity that pass through mutual algebraicity. First, we show that a countable structure M is cellular if and only if M is \-categorical and mutually algebraic. Second, if a countable structure M in a finite relational language is mutually algebraic non-cellular, we show it admits an elementary extension adding infinitely many infinite MA-connected components. Towards these results, we introduce MA-presentations of a mutually algebraic structure, in which every atomic formula is mutually (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Weakly minimal groups with a new predicate.Gabriel Conant & Michael C. Laskowski - 2020 - Journal of Mathematical Logic 20 (2):2050011.
    Fix a weakly minimal (i.e. superstable U-rank 1) structure M. Let M∗ be an expansion by constants for an elementary substructure, and let A be an arbitrary subset of the universe M. We show that all formulas in the expansion (M∗,A) are equivalent to bounded formulas, and so (M,A) is stable (or NIP) if and only if the M-induced structure AM on A is stable (or NIP). We then restrict to the case that M is a pure abelian group with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Characterizing Model Completeness Among Mutually Algebraic Structures.Michael C. Laskowski - 2015 - Notre Dame Journal of Formal Logic 56 (3):463-470.
    We characterize when the elementary diagram of a mutually algebraic structure has a model complete theory, and give an explicit description of a set of existential formulas to which every formula is equivalent. This characterization yields a new, more constructive proof that the elementary diagram of any model of a strongly minimal, trivial theory is model complete.
    Download  
     
    Export citation  
     
    Bookmark  
  • Most(?) Theories Have Borel Complete Reducts.Michael C. Laskowski & Douglas S. Ulrich - 2023 - Journal of Symbolic Logic 88 (1):418-426.
    We prove that many seemingly simple theories have Borel complete reducts. Specifically, if a countable theory has uncountably many complete one-types, then it has a Borel complete reduct. Similarly, if $Th(M)$ is not small, then $M^{eq}$ has a Borel complete reduct, and if a theory T is not $\omega $ -stable, then the elementary diagram of some countable model of T has a Borel complete reduct.
    Download  
     
    Export citation  
     
    Bookmark