Switch to: References

Add citations

You must login to add citations.
  1. Practical, epistemic and normative implications of algorithmic bias in healthcare artificial intelligence: a qualitative study of multidisciplinary expert perspectives.Yves Saint James Aquino, Stacy M. Carter, Nehmat Houssami, Annette Braunack-Mayer, Khin Than Win, Chris Degeling, Lei Wang & Wendy A. Rogers - forthcoming - Journal of Medical Ethics.
    Background There is a growing concern about artificial intelligence (AI) applications in healthcare that can disadvantage already under-represented and marginalised groups (eg, based on gender or race). Objectives Our objectives are to canvas the range of strategies stakeholders endorse in attempting to mitigate algorithmic bias, and to consider the ethical question of responsibility for algorithmic bias. Methodology The study involves in-depth, semistructured interviews with healthcare workers, screening programme managers, consumer health representatives, regulators, data scientists and developers. Results Findings reveal considerable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • When the frameworks don’t work: data protection, trust and artificial intelligence.Zoë Fritz - 2022 - Journal of Medical Ethics 48 (4):213-214.
    With new technologies come new ethical challenges. Often, we can apply previously established principles, even though it may take some time to fully understand the detail of the new technology - or the questions that arise from it. The International Commission on Radiological Protection, for example, was founded in 1928 and has based its advice on balancing the radiation exposure associated with X-rays and CT scans with the diagnostic benefits of the new investigations. They have regularly updated their advice as (...)
    Download  
     
    Export citation  
     
    Bookmark