Switch to: References

Add citations

You must login to add citations.
  1. On the actual impact of deterministic chaos.Theodor Leiber - 1997 - Synthese 113 (3):357-379.
    The notion of (deterministic) chaos is frequently used in an increasing number of scientific (as well as non-scientific) contexts, ranging from mathematics and the physics of dynamical systems to all sorts of complicated time evolutions, e.g., in chemistry, biology, physiology, economy, sociology, and even psychology. Despite (or just because of) these widespread applications, however, there seem to fluctuate around several misunderstandings about the actual impact of deterministic chaos on several problems of philosophical interest, e.g., on matters of prediction and computability, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Zwischen berechenbarkeit und nichtberechenbarkeit. Die thematisierung der berechenbarkeit in der aktuellen physik komplexer systeme.Jan C. Schmidt - 2003 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 34 (1):99-131.
    Between Calculability and Non-Calculability. Issues of Calculability and Predictability in the Physics of Complex Systems. The ability to predict has been a very important qualifier of what constitutes scientific knowledge, ever since the successes of Babylonian and Greek astronomy. More recent is the general appreciation of the fact that in the presence of deterministic chaos, predictability is severely limited (the so-called ‘butterfly effect’): Nearby trajectories diverge during time evolution; small errors typically grow exponentially with time. The system obeys deterministic laws (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Deterministic chaos and computational complexity: The case of methodological complexity reductions. [REVIEW]Theodor Leiber - 1999 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 30 (1):87-101.
    Some problems rarely discussed in traditional philosophy of science are mentioned: The empirical sciences using mathematico-quantitative theoretical models are frequently confronted with several types of computational problems posing primarily methodological limitations on explanatory and prognostic matters. Such limitations may arise from the appearances of deterministic chaos and high computational complexity in general. In many cases, however, scientists circumvent such limitations by utilizing reductional approximations or complexity reductions for intractable problem formulations, thus constructing new models which are computationally tractable. Such activities (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations