Switch to: References

Add citations

You must login to add citations.
  1. The Dividing Line Methodology: Model Theory Motivating Set Theory.John T. Baldwin - 2021 - Theoria 87 (2):361-393.
    We explore Shelah's model‐theoretic dividing line methodology. In particular, we discuss how problems in model theory motivated new techniques in model theory, for example classifying theories by their potential (consistently with Zermelo–Fraenkel set theory with the axiom of choice (ZFC)) spectrum of cardinals in which there is a universal model. Two other examples are the study (with Malliaris) of the Keisler order leading to a new ZFC result on cardinal invariants and attempts to clarify the “main gap” by reducing the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On differential Galois groups of strongly normal extensions.Quentin Brouette & Françoise Point - 2018 - Mathematical Logic Quarterly 64 (3):155-169.
    We revisit Kolchin's results on definability of differential Galois groups of strongly normal extensions, in the case where the field of constants is not necessarily algebraically closed. In certain classes of differential topological fields, which encompasses ordered or p‐valued differential fields, we find a partial Galois correspondence and we show one cannot expect more in general. In the class of ordered differential fields, using elimination of imaginaries in, we establish a relative Galois correspondence for relatively definable subgroups of the group (...)
    Download  
     
    Export citation  
     
    Bookmark