Switch to: References

Add citations

You must login to add citations.
  1. The role of true finiteness in the admissible recursively enumerable degrees.Noam Greenberg - 2005 - Bulletin of Symbolic Logic 11 (3):398-410.
    We show, however, that this is not always the case.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • 2000 European Summer Meeting of the Association for Symbolic Logic. Logic Colloquium 2000.Carol Wood - 2001 - Bulletin of Symbolic Logic 7 (1):82-163.
    Download  
     
    Export citation  
     
    Bookmark  
  • A necessary and sufficient condition for embedding principally decomposable finite lattices into the computably enumerable degrees preserving greatest element.Burkhard Englert - 2001 - Annals of Pure and Applied Logic 112 (1):1-26.
    We present a necessary and sufficient condition for the embeddability of a finite principally decomposable lattice into the computably enumerable degrees preserving greatest element.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Embedding finite lattices into the ideals of computably enumerable Turing degrees.William C. Calhoun & Manuel Lerman - 2001 - Journal of Symbolic Logic 66 (4):1791-1802.
    We show that the lattice L 20 is not embeddable into the lattice of ideals of computably enumerable Turing degrees (J). We define a structure called a pseudolattice that generalizes the notion of a lattice, and show that there is a Π 2 necessary and sufficient condition for embedding a finite pseudolattice into J.
    Download  
     
    Export citation  
     
    Bookmark  
  • A necessary and sufficient condition for embedding principally decomposable finite lattices into the computably enumerable degrees.M. Lerman - 2000 - Annals of Pure and Applied Logic 101 (2-3):275-297.
    We present a necessary and sufficient condition for the embeddability of a principally decomposable finite lattice into the computably enumerable degrees. This improves a previous result which required that, in addition, the lattice be ranked. The same condition is also necessary and sufficient for a finite lattice to be embeddable below every non-zero computably enumerable degree.
    Download  
     
    Export citation  
     
    Bookmark   5 citations