Switch to: References

Add citations

You must login to add citations.
  1. An Essay on Inferential Erotetic Logic.Andrzej Wiśniewski - 2021 - In Moritz Cordes (ed.), Asking and Answering: Rivalling Approaches to Interrogative Methods. Tübingen: Narr Francke Attempto. pp. 105–138.
    By and large, Inferential Erotetic Logic (IEL, for short) is an approach to the logic of questions which puts in the centre of attention inferential aspects of questioning. IEL is not an enterprise of the last few years only. The idea originates from the late 1980s. It evolved through time. Initially, the stress was put on the phenomenon of question raising. This changed gradually, as some forms of reasoning that involve questions have appeared to be analyzable by means of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Method of Socratic Proofs: From the Logic of Questions to Proof Theory.Dorota Leszczyńska-Jasion - 2021 - In Moritz Cordes (ed.), Asking and Answering: Rivalling Approaches to Interrogative Methods. Tübingen: Narr Francke Attempto. pp. 183–198.
    I consider two cognitive phenomena: inquiring and justifying, as complementary processes running in opposite directions. I explain on an example that the former process is driven by questions and the latter is a codification of the results of the first one. Traditionally, proof theory focuses on the latter process, and thus describes the former, at best, as an example of a backward proof search. I argue that this is not the best way to analyze cognitive processes driven by questions, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Socratic Trees.Dorota Leszczyńska-Jasion, Mariusz Urbański & Andrzej Wiśniewski - 2013 - Studia Logica 101 (5):959-986.
    The method of Socratic proofs (SP-method) simulates the solving of logical problem by pure questioning. An outcome of an application of the SP-method is a sequence of questions, called a Socratic transformation. Our aim is to give a method of translation of Socratic transformations into trees. We address this issue both conceptually and by providing certain algorithms. We show that the trees which correspond to successful Socratic transformations—that is, to Socratic proofs—may be regarded, after a slight modification, as Gentzen-style proofs. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Dual Erotetic Calculi and the Minimal LFI.Szymon Chlebowski & Dorota Leszczyńska-Jasion - 2015 - Studia Logica 103 (6):1245-1278.
    An erotetic calculus for a given logic constitutes a sequent-style proof-theoretical formalization of the logic grounded in Inferential Erotetic Logic ). In this paper, a new erotetic calculus for Classical Propositional Logic ), dual with respect to the existing ones, is given. We modify the calculus to obtain complete proof systems for the propositional part of paraconsistent logic CLuN and its extensions CLuNs and mbC. The method is based on dual resolution. Moreover, the resolution rule is non-clausal. According to the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Loop-Free Decision Procedure for Modal Propositional Logics K4, S4 and S5.Dorota Leszczyńska-Jasion - 2009 - Journal of Philosophical Logic 38 (2):151-177.
    The aim of this paper is to present a loop-free decision procedure for modal propositional logics K4, S4 and S5. We prove that the procedure terminates and that it is sound and complete. The procedure is based on the method of Socratic proofs for modal logics, which is grounded in the logic of questions IEL.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Rasiowa–Sikorski Deduction Systems with the Rule of Cut: A Case Study.Dorota Leszczyńska-Jasion, Mateusz Ignaszak & Szymon Chlebowski - 2019 - Studia Logica 107 (2):313-349.
    This paper presents Rasiowa–Sikorski deduction systems for logics \, \, \ and \. For each of the logics two systems are developed: an R–S system that can be supplemented with admissible cut rule, and a \-version of R–S system in which the non-admissible rule of cut is the only branching rule. The systems are presented in a Smullyan-like uniform notation, extended and adjusted to the aims of this paper. Completeness is proved by the use of abstract refutability properties which are (...)
    Download  
     
    Export citation  
     
    Bookmark