Switch to: References

Add citations

You must login to add citations.
  1. Bochvar's Three-Valued Logic and Literal Paralogics: Their Lattice and Functional Equivalence.Alexander Karpenko & Natalya Tomova - 2017 - Logic and Logical Philosophy 26 (2):207-235.
    In the present paper, various features of the class of propositional literal paralogics are considered. Literal paralogics are logics in which the paraproperties such as paraconsistence, paracompleteness and paranormality, occur only at the level of literals; that is, formulas that are propositional letters or their iterated negations. We begin by analyzing Bochvar’s three-valued nonsense logic B3, which includes two isomorphs of the propositional classical logic CPC. The combination of these two ‘strong’ isomorphs leads to the construction of two famous paralogics (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Algebraization of logics defined by literal-paraconsistent or literal-paracomplete matrices.Eduardo Hirsh & Renato A. Lewin - 2008 - Mathematical Logic Quarterly 54 (2):153-166.
    We study the algebraizability of the logics constructed using literal-paraconsistent and literal-paracomplete matrices described by Lewin and Mikenberg in [11], proving that they are all algebraizable in the sense of Blok and Pigozzi in [3] but not finitely algebraizable. A characterization of the finitely algebraizable logics defined by LPP-matrices is given.We also make an algebraic study of the equivalent algebraic semantics of the logics associated to the matrices ℳ32,2, ℳ32,1, ℳ31,1, ℳ31,3, and ℳ4 appearing in [11] proving that they are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Semi-lattice of Four-valued Literal-paraconsistent-paracomplete Logics.Natalya Tomova - 2021 - Bulletin of the Section of Logic 50 (1):35-53.
    In this paper, we consider the class of four-valued literal-paraconsistent-paracomplete logics constructed by combination of isomorphs of classical logic CPC. These logics form a 10-element upper semi-lattice with respect to the functional embeddinig one logic into another. The mechanism of variation of paraconsistency and paracompleteness properties in logics is demonstrated on the example of two four-element lattices included in the upper semi-lattice. Functional properties and sets of tautologies of corresponding literal-paraconsistent-paracomplete matrices are investigated. Among the considered matrices there are the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Generalized Correspondence Analysis for Three-Valued Logics.Yaroslav Petrukhin - 2018 - Logica Universalis 12 (3-4):423-460.
    Correspondence analysis is Kooi and Tamminga’s universal approach which generates in one go sound and complete natural deduction systems with independent inference rules for tabular extensions of many-valued functionally incomplete logics. Originally, this method was applied to Asenjo–Priest’s paraconsistent logic of paradox LP. As a result, one has natural deduction systems for all the logics obtainable from the basic three-valued connectives of LP -language) by the addition of unary and binary connectives. Tamminga has also applied this technique to the paracomplete (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • First order theory for literal‐paraconsistent and literal‐paracomplete matrices.Renato A. Lewin & Irene F. Mikenberg - 2010 - Mathematical Logic Quarterly 56 (4):425-433.
    In this paper a first order theory for the logics defined through literal paraconsistent-paracomplete matrices is developed. These logics are intended to model situations in which the ground level information may be contradictory or incomplete, but it is treated within a classical framework. This means that literal formulas, i.e. atomic formulas and their iterated negations, may behave poorly specially regarding their negations, but more complex formulas, i.e. formulas that include a binary connective are well behaved. This situation may and does (...)
    Download  
     
    Export citation  
     
    Bookmark