Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)The http://ars. els-cdn. com/content/image/http://origin-ars. els-cdn. com/content/image/1-s2. 0-S0168007205001429-si1. gif"/> degrees of computably enumerable sets are not dense. [REVIEW]George Barmpalias & Andrew Em Lewis - 2006 - Annals of Pure and Applied Logic 141 (1):51-60.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Algorithmic Randomness and Measures of Complexity.George Barmpalias - 2013 - Bulletin of Symbolic Logic 19 (3):318-350.
    We survey recent advances on the interface between computability theory and algorithmic randomness, with special attention on measures of relative complexity. We focus on reducibilities that measure the initial segment complexity of reals and the power of reals to compress strings, when they are used as oracles. The results are put into context and several connections are made with various central issues in modern algorithmic randomness and computability.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The ibT degrees of computably enumerable sets are not dense.George Barmpalias & Andrew E. M. Lewis - 2006 - Annals of Pure and Applied Logic 141 (1-2):51-60.
    We show that the identity bounded Turing degrees of computably enumerable sets are not dense.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Randomness and the linear degrees of computability.Andrew Em Lewis & George Barmpalias - 2007 - Annals of Pure and Applied Logic 145 (3):252-257.
    We show that there exists a real α such that, for all reals β, if α is linear reducible to β then β≤Tα. In fact, every random real satisfies this quasi-maximality property. As a corollary we may conclude that there exists no ℓ-complete Δ2 real. Upon realizing that quasi-maximality does not characterize the random reals–there exist reals which are not random but which are of quasi-maximal ℓ-degree–it is then natural to ask whether maximality could provide such a characterization. Such hopes, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A C.E. Real That Cannot Be SW-Computed by Any Ω Number.George Barmpalias & Andrew E. M. Lewis - 2006 - Notre Dame Journal of Formal Logic 47 (2):197-209.
    The strong weak truth table (sw) reducibility was suggested by Downey, Hirschfeldt, and LaForte as a measure of relative randomness, alternative to the Solovay reducibility. It also occurs naturally in proofs in classical computability theory as well as in the recent work of Soare, Nabutovsky, and Weinberger on applications of computability to differential geometry. We study the sw-degrees of c.e. reals and construct a c.e. real which has no random c.e. real (i.e., Ω number) sw-above it.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Maximal pairs of c.e. reals in the computably Lipschitz degrees.Yun Fan & Liang Yu - 2011 - Annals of Pure and Applied Logic 162 (5):357-366.
    Computably Lipschitz reducibility , was suggested as a measure of relative randomness. We say α≤clβ if α is Turing reducible to β with oracle use on x bounded by x+c. In this paper, we prove that for any non-computable real, there exists a c.e. real so that no c.e. real can cl-compute both of them. So every non-computable c.e. real is the half of a cl-maximal pair of c.e. reals.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A uniform version of non-low2-ness.Yun Fan - 2017 - Annals of Pure and Applied Logic 168 (3):738-748.
    Download  
     
    Export citation  
     
    Bookmark  
  • Calibrating randomness.Rod Downey, Denis R. Hirschfeldt, André Nies & Sebastiaan A. Terwijn - 2006 - Bulletin of Symbolic Logic 12 (3):411-491.
    We report on some recent work centered on attempts to understand when one set is more random than another. We look at various methods of calibration by initial segment complexity, such as those introduced by Solovay [125], Downey, Hirschfeldt, and Nies [39], Downey, Hirschfeldt, and LaForte [36], and Downey [31]; as well as other methods such as lowness notions of Kučera and Terwijn [71], Terwijn and Zambella [133], Nies [101, 100], and Downey, Griffiths, and Reid [34]; higher level randomness notions (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • The computable Lipschitz degrees of computably enumerable sets are not dense.Adam R. Day - 2010 - Annals of Pure and Applied Logic 161 (12):1588-1602.
    The computable Lipschitz reducibility was introduced by Downey, Hirschfeldt and LaForte under the name of strong weak truth-table reducibility [6]). This reducibility measures both the relative randomness and the relative computational power of real numbers. This paper proves that the computable Lipschitz degrees of computably enumerable sets are not dense. An immediate corollary is that the Solovay degrees of strongly c.e. reals are not dense. There are similarities to Barmpalias and Lewis’ proof that the identity bounded Turing degrees of c.e. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations