Switch to: References

Add citations

You must login to add citations.
  1. Frege on Referentiality and Julius Caesar in Grundgesetze Section 10.Bruno Bentzen - 2019 - Notre Dame Journal of Formal Logic 60 (4):617-637.
    This paper aims to answer the question of whether or not Frege's solution limited to value-ranges and truth-values proposed to resolve the "problem of indeterminacy of reference" in section 10 of Grundgesetze is a violation of his principle of complete determination, which states that a predicate must be defined to apply for all objects in general. Closely related to this doubt is the common allegation that Frege was unable to solve a persistent version of the Caesar problem for value-ranges. It (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Status of Value-ranges in the Argument of Basic Laws of Arithmetic I §10.Thomas Lockhart - 2017 - History and Philosophy of Logic 38 (4):345-363.
    Frege's concern in GGI §10 is neither with the epistemological issue of how we come to know about value-ranges, nor with the semantic-metaphysical issue of whether we have said enough about such objects in order to ensure that any kind of reference to them is possible. The problem which occupies Frege in GGI §10 is the general problem according to which we ‘cannot yet decide’, for any arbitrary function, what value ‘’ has if ‘ℵ’ is a canonical value-range name. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Frege and semantics.Richard G. Heck - 2007 - Grazer Philosophische Studien 75 (1):27-63.
    In recent work on Frege, one of the most salient issues has been whether he was prepared to make serious use of semantical notions such as reference and truth. I argue here Frege did make very serious use of semantical concepts. I argue, first, that Frege had reason to be interested in the question how the axioms and rules of his formal theory might be justified and, second, that he explicitly commits himself to offering a justification that appeals to the (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Bad company tamed.Øystein Linnebo - 2009 - Synthese 170 (3):371 - 391.
    The neo-Fregean project of basing mathematics on abstraction principles faces “the bad company problem,” namely that a great variety of unacceptable abstraction principles are mixed in among the acceptable ones. In this paper I propose a new solution to the problem, based on the idea that individuation must take the form of a well-founded process. A surprising aspect of this solution is that every form of abstraction on concepts is permissible and that paradox is instead avoided by restricting what concepts (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • An Essay on Compositionality of Thoughts in Frege’s Philosophy.Krystian Bogucki - 2022 - Philosophical Papers 51 (1):1-43.
    In the paper, I propose a novel approach to Frege’s view on the principle of compositionality, its relation to the propositional holism and the formation of concepts. The main idea is to distinguish three stages of constructing a logically perfect language. At the first stage, only a sentence as a whole expresses a Thought. It is impossible to assign meaning to less complex units. This is the stage of an ordinary language. The second phase concerns the proper level of construction (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege’s View of the Context Principle After 1890.Krystian Bogucki - 2022 - Grazer Philosophische Studien 99 (1):1-29.
    The aim of this article is to examine Frege’s view of the context principle in his mature philosophical doctrine. Here, the author argues that the context principle is embodied in the contextual explanation of value-ranges presented in Basic Laws of Arithmetic. The contextual explanation of value-ranges plays essentially the same role as the context principle in The Foundations of Arithmetic. It is supposed to show how a reference to natural numbers is possible. Moreover, the author argues against the view that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Term Models for Abstraction Principles.Leon Horsten & Øystein Linnebo - 2016 - Journal of Philosophical Logic 45 (1):1-23.
    Kripke’s notion of groundedness plays a central role in many responses to the semantic paradoxes. Can the notion of groundedness be brought to bear on the paradoxes that arise in connection with abstraction principles? We explore a version of grounded abstraction whereby term models are built up in a ‘grounded’ manner. The results are mixed. Our method solves a problem concerning circularity and yields a ‘grounded’ model for the predicative theory based on Frege’s Basic Law V. However, the method is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Syntax in Basic Laws §§29–32.Bryan Pickel - 2010 - Notre Dame Journal of Formal Logic 51 (2):253-277.
    In order to accommodate his view that quantifiers are predicates of predicates within a type theory, Frege introduces a rule which allows a function name to be formed by removing a saturated name from another saturated name which contains it. This rule requires that each name has a rather rich syntactic structure, since one must be able to recognize the occurrences of a name in a larger name. However, I argue that Frege is unable to account for this syntactic structure. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Predicative fragments of Frege arithmetic.Øystein Linnebo - 2004 - Bulletin of Symbolic Logic 10 (2):153-174.
    Frege Arithmetic (FA) is the second-order theory whose sole non-logical axiom is Hume’s Principle, which says that the number of F s is identical to the number of Gs if and only if the F s and the Gs can be one-to-one correlated. According to Frege’s Theorem, FA and some natural definitions imply all of second-order Peano Arithmetic. This paper distinguishes two dimensions of impredicativity involved in FA—one having to do with Hume’s Principle, the other, with the underlying second-order logic—and (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Identity and the Cognitive Value of Logical Equations in Frege’s Foundational Project.Matthias Schirn - 2023 - Notre Dame Journal of Formal Logic 64 (4):495-544.
    In this article, I first analyze and assess the epistemological and semantic status of canonical value-range equations in the formal language of Frege’s Grundgesetze der Arithmetik. I subsequently scrutinize the relation between (a) his informal, metalinguistic stipulation in Grundgesetze I, Section 3, and (b) its formal counterpart, which is Basic Law V. One point I argue for is that the stipulation in Section 3 was designed not only to fix the references of value-range names, but that it was probably also (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The semantics of value-range names and frege’s proof of referentiality.Matthias Schirn - 2018 - Review of Symbolic Logic 11 (2):224-278.
    In this article, I try to shed some new light onGrundgesetze§10, §29–§31 with special emphasis on Frege’s criteria and proof of referentiality and his treatment of the semantics of canonical value-range names. I begin by arguing against the claim, recently defended by several Frege scholars, that the first-order domain inGrundgesetzeis restricted to value-ranges, but conclude that there is an irresolvable tension in Frege’s view. The tension has a direct impact on the semantics of the concept-script, not least on the semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Double vision: two questions about the neo-Fregean program.John MacFarlane - 2009 - Synthese 170 (3):443-456.
    Much of The Reason’s Proper Study is devoted to defending the claim that simply by stipulating an abstraction principle for the “number-of” functor, we can simultaneously fix a meaning for this functor and acquire epistemic entitlement to the stipulated principle. In this paper, I argue that the semantic and epistemological principles Hale and Wright offer in defense of this claim may be too strong for their purposes. For if these principles are correct, it is hard to see why they do (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • To be is to be an F.Øystein Linnebo - 2005 - Dialectica 59 (2):201–222.
    I defend the view that our ontology divides into categories, each with its own canonical way of identifying and distinguishing the objects it encompasses. For instance, I argue that natural numbers are identified and distinguished by their positions in the number sequence, and physical bodies, by facts having to do with spatiotemporal continuity. I also argue that objects belonging to different categories are ipso facto distinct. My arguments are based on an analysis of reference, which ascribes to reference a richer (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Review of Kazuyuki Nomoto "Frege Tetsugaku no Zenbou (Gottlob Freges Logizismus und seine logische Semantik als der Prototyp)". [REVIEW]Hidenori Kurokawa - 2014 - Journal of the Japan Association for Philosophy of Science 42 (1):39-54.
    Download  
     
    Export citation  
     
    Bookmark   1 citation