Switch to: References

Citations of:

On Model-Completeness

Theoria 30 (3):183-196 (1964)

Add citations

You must login to add citations.
  1. Existentially closed structures.H. Simmons - 1972 - Journal of Symbolic Logic 37 (2):293-310.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Coinductive ℵ0-categorical theories.James H. Schmerl - 1990 - Journal of Symbolic Logic 55 (3):1130 - 1137.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Existentially closed algebras and boolean products.Herbert H. J. Riedel - 1988 - Journal of Symbolic Logic 53 (2):571-596.
    A Boolean product construction is used to give examples of existentially closed algebras in the universal Horn class ISP generated by a universal classKof finitely subdirectly irreducible algebras such that Γa has the Fraser-Horn property. If ⟦a≠b⟧ ∩ ⟦c≠d⟧ = ∅ is definable inKandKhas a model companion ofK-simple algebras, then it is shown that ISP has a model companion. Conversely, a sufficient condition is given for ISP to have no model companion.
    Download  
     
    Export citation  
     
    Bookmark  
  • Über eine verallgemeinerung der robinsonschen modellvervollständigung I.Klaus Kaiser - 1969 - Mathematical Logic Quarterly 15 (1‐3):37-48.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (2 other versions)Über eine verallgemeinerung der robinsonschen modellvervollständigung I.Klaus Kaiser - 1969 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 15 (1-3):37-48.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Finitely axiomatizable ℵ1 categorical theories.Ehud Hrushovski - 1994 - Journal of Symbolic Logic 59 (3):838 - 844.
    Finitely axiomatizable ℵ 1 categorical theories are locally modular.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Some model theory of Abelian groups.Paul C. Eklof - 1972 - Journal of Symbolic Logic 37 (2):335-342.
    We study the relations between abelian groups B and C that every universal (resp. universal-existential) sentence true in B is also true in C, and give algebraic criteria for these relations to hold. As a consequence we characterize the inductive complete theories of abelian groups and prove that they are exactly the model-complete theories.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Model-completions and modules.P. Eklof - 1971 - Annals of Mathematical Logic 2 (3):251.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Categoricity and stability of commutative rings.Gregory L. Cherlin - 1976 - Annals of Mathematical Logic 9 (4):367.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Omitting types of prenex formulas.C. C. Chang - 1967 - Journal of Symbolic Logic 32 (1):61-74.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The metamathematics of random graphs.John T. Baldwin - 2006 - Annals of Pure and Applied Logic 143 (1-3):20-28.
    We explain and summarize the use of logic to provide a uniform perspective for studying limit laws on finite probability spaces. This work connects developments in stability theory, finite model theory, abstract model theory, and probability. We conclude by linking this context with work on the Urysohn space.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Strongly minimal Steiner systems I: Existence.John Baldwin & Gianluca Paolini - 2021 - Journal of Symbolic Logic 86 (4):1486-1507.
    A linear space is a system of points and lines such that any two distinct points determine a unique line; a Steiner k-system is a linear space such that each line has size exactly k. Clearly, as a two-sorted structure, no linear space can be strongly minimal. We formulate linear spaces in a vocabulary $\tau $ with a single ternary relation R. We prove that for every integer k there exist $2^{\aleph _0}$ -many integer valued functions $\mu $ such that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Constructing ω-stable structures: model completeness.John T. Baldwin & Kitty Holland - 2004 - Annals of Pure and Applied Logic 125 (1-3):159-172.
    The projective plane of Baldwin 695) is model complete in a language with additional constant symbols. The infinite rank bicolored field of Poizat 1339) is not model complete. The finite rank bicolored fields of Baldwin and Holland 371; Notre Dame J. Formal Logic , to appear) are model complete. More generally, the finite rank expansions of a strongly minimal set obtained by adding a ‘random’ unary predicate are almost strongly minimal and model complete provided the strongly minimal set is ‘well-behaved’ (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Completeness and categoricity (in power): Formalization without foundationalism.John T. Baldwin - 2014 - Bulletin of Symbolic Logic 20 (1):39-79.
    We propose a criterion to regard a property of a theory (in first or second order logic) as virtuous: the property must have significant mathematical consequences for the theory (or its models). We then rehearse results of Ajtai, Marek, Magidor, H. Friedman and Solovay to argue that for second order logic, ‘categoricity’ has little virtue. For first order logic, categoricity is trivial; but ‘categoricity in power’ has enormous structural consequences for any of the theories satisfying it. The stability hierarchy extends (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Categoricity and generalized model completeness.G. Ahlbrandt & John T. Baldwin - 1988 - Archive for Mathematical Logic 27 (1):1-4.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • In memoriam: Per Lindström.Jouko Väänänen & Dag Westerståhl - 2010 - Theoria 76 (2):100-107.
    Download  
     
    Export citation  
     
    Bookmark