Switch to: References

Add citations

You must login to add citations.
  1. Belnap–Dunn Modal Logic with Value Operators.Yuanlei Lin & Minghui Ma - 2020 - Studia Logica 109 (4):759-789.
    The language of Belnap–Dunn modal logic \ expands the language of Belnap–Dunn four-valued logic with the modal operator \. We introduce the polarity semantics for \ and its two expansions \ and \ with value operators. The local finitary consequence relation \ in the language \ with respect to the class of all frames is axiomatized by a sequent system \ where \. We prove by using translations between sequents and formulas that these languages under the polarity semantics have the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Kripke-Completeness and Sequent Calculus for Quasi-Boolean Modal Logic.Minghui Ma & Juntong Guo - forthcoming - Studia Logica:1-30.
    Quasi-Boolean modal algebras are quasi-Boolean algebras with a modal operator satisfying the interaction axiom. Sequential quasi-Boolean modal logics and the relational semantics are introduced. Kripke-completeness for some quasi-Boolean modal logics is shown by the canonical model method. We show that every descriptive persistent quasi-Boolean modal logic is canonical. The finite model property of some quasi-Boolean modal logics is proved. A cut-free Gentzen sequent calculus for the minimal quasi-Boolean logic is developed and we show that it has the Craig interpolation property.
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuitionistic Propositional Logic with Galois Negations.Minghui Ma & Guiying Li - 2023 - Studia Logica 111 (1):21-56.
    Intuitionistic propositional logic with Galois negations ( \(\mathsf {IGN}\) ) is introduced. Heyting algebras with Galois negations are obtained from Heyting algebras by adding the Galois pair \((\lnot,{\sim })\) and dual Galois pair \((\dot{\lnot },\dot{\sim })\) of negations. Discrete duality between GN-frames and algebras as well as the relational semantics for \(\mathsf {IGN}\) are developed. A Hilbert-style axiomatic system \(\mathsf {HN}\) is given for \(\mathsf {IGN}\), and Galois negation logics are defined as extensions of \(\mathsf {IGN}\). We give the bi-tense (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Neighbourhood Semantics for FDE-Based Modal Logics.S. Drobyshevich & D. Skurt - 2021 - Studia Logica 109 (6):1273-1309.
    We investigate some non-normal variants of well-studied paraconsistent and paracomplete modal logics that are based on N. Belnap’s and M. Dunn’s four-valued logic. Our basic non-normal modal logics are characterized by a weak extensionality rule, which reflects the four-valued nature of underlying logics. Aside from introducing our basic framework of bi-neighbourhood semantics, we develop a correspondence theory in order to prove completeness results with respect to our neighbourhood semantics for non-normal variants of \, \ and \.
    Download  
     
    Export citation  
     
    Bookmark   1 citation