Switch to: References

Citations of:

RT2 2 does not imply WKL0

Journal of Symbolic Logic 77 (2):609-620 (2012)

Add citations

You must login to add citations.
  1. (Extra)Ordinary Equivalences with the Ascending/Descending Sequence Principle.Marta Fiori-Carones, Alberto Marcone, Paul Shafer & Giovanni Soldà - 2024 - Journal of Symbolic Logic 89 (1):262-307.
    We analyze the axiomatic strength of the following theorem due to Rival and Sands [28] in the style of reverse mathematics. Every infinite partial order P of finite width contains an infinite chain C such that every element of P is either comparable with no element of C or with infinitely many elements of C. Our main results are the following. The Rival–Sands theorem for infinite partial orders of arbitrary finite width is equivalent to $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Open questions about Ramsey-type statements in reverse mathematics.Ludovic Patey - 2016 - Bulletin of Symbolic Logic 22 (2):151-169.
    Ramsey’s theorem states that for any coloring of then-element subsets of ℕ with finitely many colors, there is an infinite setHsuch that alln-element subsets ofHhave the same color. The strength of consequences of Ramsey’s theorem has been extensively studied in reverse mathematics and under various reducibilities, namely, computable reducibility and uniform reducibility. Our understanding of the combinatorics of Ramsey’s theorem and its consequences has been greatly improved over the past decades. In this paper, we state some questions which naturally arose (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Review of Denis R. Hirschfeldt, Slicing the Truth: On the Computability Theoretic and Reverse Mathematical Analysis of Combinatorial Principles. [REVIEW]Benedict Eastaugh - 2017 - Studia Logica 105 (4):873-879.
    The present volume is an introduction to the use of tools from computability theory and reverse mathematics to study combinatorial principles, in particular Ramsey's theorem and special cases such as Ramsey's theorem for pairs. It would serve as an excellent textbook for graduate students who have completed a course on computability theory.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Thin Set Theorem for Pairs Implies DNR.Brian Rice - 2015 - Notre Dame Journal of Formal Logic 56 (4):595-601.
    Answering a question in the reverse mathematics of combinatorial principles, we prove that the thin set theorem for pairs ) implies the diagonally noncomputable set principle over the base axiom system $\mathrm{RCA}_{0}$.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cohesive sets and rainbows.Wei Wang - 2014 - Annals of Pure and Applied Logic 165 (2):389-408.
    We study the strength of RRT32, Rainbow Ramsey Theorem for colorings of triples, and prove that RCA0 + RRT32 implies neither WKL0 nor RRT42 source. To this end, we establish some recursion theoretic properties of cohesive sets and rainbows for colorings of pairs. We show that every sequence admits a cohesive set of non-PA Turing degree; and that every ∅′-recursive sequence admits a low3 cohesive set.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Partition Genericity and Pigeonhole Basis Theorems.Benoit Monin & Ludovic Patey - 2024 - Journal of Symbolic Logic 89 (2):829-857.
    There exist two main notions of typicality in computability theory, namely, Cohen genericity and randomness. In this article, we introduce a new notion of genericity, called partition genericity, which is at the intersection of these two notions of typicality, and show that many basis theorems apply to partition genericity. More precisely, we prove that every co-hyperimmune set and every Kurtz random is partition generic, and that every partition generic set admits weak infinite subsets, for various notions of weakness. In particular, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reverse mathematical bounds for the Termination Theorem.Silvia Steila & Keita Yokoyama - 2016 - Annals of Pure and Applied Logic 167 (12):1213-1241.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ramsey-type graph coloring and diagonal non-computability.Ludovic Patey - 2015 - Archive for Mathematical Logic 54 (7-8):899-914.
    A function is diagonally non-computable if it diagonalizes against the universal partial computable function. D.n.c. functions play a central role in algorithmic randomness and reverse mathematics. Flood and Towsner asked for which functions h, the principle stating the existence of an h-bounded d.n.c. function implies Ramsey-type weak König’s lemma. In this paper, we prove that for every computable order h, there exists an ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega}$$\end{document} -model of h-DNR which is not a not (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Thin Set Versions of Hindman’s Theorem.Denis R. Hirschfeldt & Sarah C. Reitzes - 2022 - Notre Dame Journal of Formal Logic 63 (4):481-491.
    We examine the reverse mathematical strength of a variation of Hindman’s Theorem (HT) constructed by essentially combining HT with the Thin Set Theorem to obtain a principle that we call thin-HT. This principle states that every coloring c:N→N has an infinite set S⊆N whose finite sums are thin for c, meaning that there is an i with c(s)≠i for all nonempty sums s of finitely many distinct elements of S. We show that there is a computable instance of thin-HT such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On notions of computability-theoretic reduction between Π21 principles.Denis R. Hirschfeldt & Carl G. Jockusch - 2016 - Journal of Mathematical Logic 16 (1):1650002.
    Several notions of computability-theoretic reducibility between [Formula: see text] principles have been studied. This paper contributes to the program of analyzing the behavior of versions of Ramsey’s Theorem and related principles under these notions. Among other results, we show that for each [Formula: see text], there is an instance of RT[Formula: see text] all of whose solutions have PA degree over [Formula: see text] and use this to show that König’s Lemma lies strictly between RT[Formula: see text] and RT[Formula: see (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Separating weak α-change and α-change genericity.Michael McInerney & Keng Meng Ng - 2022 - Annals of Pure and Applied Logic 173 (7):103134.
    Download  
     
    Export citation  
     
    Bookmark  
  • Separating principles below WKL0.Stephen Flood & Henry Towsner - 2016 - Mathematical Logic Quarterly 62 (6):507-529.
    Download  
     
    Export citation  
     
    Bookmark