Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Countable models of trivial theories which admit finite coding.James Loveys & Predrag Tanović - 1996 - Journal of Symbolic Logic 61 (4):1279-1286.
    We prove: Theorem. A complete first order theory in a countable language which is strictly stable, trivial and which admits finite coding has 2 ℵ 0 nonisomorphic countable models. Combined with the corresponding result or superstable theories from [4] our result confirms the Vaught conjecture for trivial theories which admit finite coding.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the number of models of uncountable theories.Ambar Chowdhury & Anand Pillay - 1994 - Journal of Symbolic Logic 59 (4):1285-1300.
    In this paper we establish the following theorems. THEOREM A. Let T be a complete first-order theory which is uncountable. Then: (i) I(|T|, T) ≥ ℵ 0 . (ii) If T is not unidimensional, then for any λ ≥ |T|, I (λ, T) ≥ ℵ 0 . THEOREM B. Let T be superstable, not totally transcendental and nonmultidimensional. Let θ(x) be a formula of least R ∞ rank which does not have Morley rank, and let p be any stationary completion (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Meager forking.Ludomir Newelski - 1994 - Annals of Pure and Applied Logic 70 (2):141-175.
    T is stable. We define the notion of meager regular type and prove that a meager regular type is locally modular. Assuming I < 2o and G is a definable abelian group with locally modular regular generics, we prove a counterpart of Saffe's conjecture. Using these results, for superstable T we prove the conjecture of vanishing multiplicities. Also, as a further application, in some additional cases we prove a conjecture regarding topological stability of pseudo-types over Q.
    Download  
     
    Export citation  
     
    Bookmark   12 citations