Switch to: References

Add citations

You must login to add citations.
  1. Causal Confirmation Measures: From Simpson’s Paradox to COVID-19.Chenguang Lu - 2023 - Entropy 25 (1):143.
    When we compare the influences of two causes on an outcome, if the conclusion from every group is against that from the conflation, we think there is Simpson’s Paradox. The Existing Causal Inference Theory (ECIT) can make the overall conclusion consistent with the grouping conclusion by removing the confounder’s influence to eliminate the paradox. The ECIT uses relative risk difference Pd = max(0, (R − 1)/R) (R denotes the risk ratio) as the probability of causation. In contrast, Philosopher Fitelson uses (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • 美感奥妙和需求进化(Mystery of Beauty Sense and Evolution of Needs).Chenguang Lu - 2007 - Hefei: China Science and Technology University Press.
    It proposes the Need Aesthetics. It uses the needing relationship to explain Human and birds' evolution of beauty sense, bird's colorful plumage and sexual selection.
    Download  
     
    Export citation  
     
    Bookmark  
  • Semantic Information G Theory and Logical Bayesian Inference for Machine Learning.Chenguang Lu - 2019 - Information 10 (8):261.
    An important problem with machine learning is that when label number n>2, it is very difficult to construct and optimize a group of learning functions, and we wish that optimized learning functions are still useful when prior distribution P(x) (where x is an instance) is changed. To resolve this problem, the semantic information G theory, Logical Bayesian Inference (LBI), and a group of Channel Matching (CM) algorithms together form a systematic solution. MultilabelMultilabel A semantic channel in the G theory consists (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Semantic Information Formula Compatible with Shannon and Popper's Theories.Chenguang Lu - manuscript
    Semantic Information conveyed by daily language has been researched for many years; yet, we still need a practical formula to measure information of a simple sentence or prediction, such as “There will be heavy rain tomorrow”. For practical purpose, this paper introduces a new formula, Semantic Information Formula (SIF), which is based on L. A. Zadeh’s fuzzy set theory and P. Z. Wang’s random set falling shadow theory. It carries forward C. E. Shannon and K. Popper’s thought. The fuzzy set’s (...)
    Download  
     
    Export citation  
     
    Bookmark