Switch to: References

Add citations

You must login to add citations.
  1. Johan van Benthem on Logic and Information Dynamics.Alexandru Baltag & Sonja Smets (eds.) - 2014 - Cham, Switzerland: Springer International Publishing.
    This book illustrates the program of Logical-Informational Dynamics. Rational agents exploit the information available in the world in delicate ways, adopt a wide range of epistemic attitudes, and in that process, constantly change the world itself. Logical-Informational Dynamics is about logical systems putting such activities at center stage, focusing on the events by which we acquire information and change attitudes. Its contributions show many current logics of information and change at work, often in multi-agent settings where social behavior is essential, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Computational Learning Semantics for Inductive Empirical Knowledge.Kevin T. Kelly - 2014 - In Alexandru Baltag & Sonja Smets (eds.), Johan van Benthem on Logic and Information Dynamics. Cham, Switzerland: Springer International Publishing. pp. 289-337.
    This chapter presents a new semantics for inductive empirical knowledge. The epistemic agent is represented concretely as a learner who processes new inputs through time and who forms new beliefs from those inputs by means of a concrete, computable learning program. The agent’s belief state is represented hyper-intensionally as a set of time-indexed sentences. Knowledge is interpreted as avoidance of error in the limit and as having converged to true belief from the present time onward. Familiar topics are re-examined within (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Subspaces of $${\mathbb{Q}}$$ whose d-logics do not have the FMP.Guram Bezhanishvili & Joel Lucero-Bryan - 2012 - Archive for Mathematical Logic 51 (5-6):661-670.
    We show that subspaces of the space ${\mathbb{Q}}$ of rational numbers give rise to uncountably many d-logics over K4 without the finite model property.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Leo Esakia on Duality in Modal and Intuitionistic Logics.Guram Bezhanishvili (ed.) - 2014 - Dordrecht, Netherland: Springer.
    This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia’s original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Taming the ‘Elsewhere’: On Expressivity of Topological Languages.David Fernández-Duque - 2024 - Review of Symbolic Logic 17 (1):144-153.
    In topological modal logic, it is well known that the Cantor derivative is more expressive than the topological closure, and the ‘elsewhere’, or ‘difference’, operator is more expressive than the ‘somewhere’ operator. In 2014, Kudinov and Shehtman asked whether the combination of closure and elsewhere becomes strictly more expressive when adding the Cantor derivative. In this paper we give an affirmative answer: in fact, the Cantor derivative alone can define properties of topological spaces not expressible with closure and elsewhere. To (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • More on d-Logics of Subspaces of the Rational Numbers.Guram Bezhanishvili & Joel Lucero-Bryan - 2012 - Notre Dame Journal of Formal Logic 53 (3):319-345.
    We prove that each countable rooted K4 -frame is a d-morphic image of a subspace of the space $\mathbb{Q}$ of rational numbers. From this we derive that each modal logic over K4 axiomatizable by variable-free formulas is the d-logic of a subspace of $\mathbb{Q}$ . It follows that subspaces of $\mathbb{Q}$ give rise to continuum many d-logics over K4 , continuum many of which are neither finitely axiomatizable nor decidable. In addition, we exhibit several families of modal logics finitely axiomatizable (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations