Switch to: References

Add citations

You must login to add citations.
  1. Definability of polyadic lifts of generalized quantifiers.Lauri Hella, Jouko Väänänen & Dag Westerståhl - 1997 - Journal of Logic, Language and Information 6 (3):305-335.
    We study generalized quantifiers on finite structures.With every function : we associate a quantifier Q by letting Q x say there are at least (n) elementsx satisfying , where n is the sizeof the universe. This is the general form ofwhat is known as a monotone quantifier of type .We study so called polyadic liftsof such quantifiers. The particular lifts we considerare Ramseyfication, branching and resumption.In each case we get exact criteria fordefinability of the lift in terms of simpler quantifiers.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On vectorizations of unary generalized quantifiers.Kerkko Luosto - 2012 - Archive for Mathematical Logic 51 (3):241-255.
    Vectorization of a class of structures is a natural notion in finite model theory. Roughly speaking, vectorizations allow tuples to be treated similarly to elements of structures. The importance of vectorizations is highlighted by the fact that if the complexity class PTIME corresponds to a logic with reasonable syntax, then it corresponds to a logic generated via vectorizations by a single generalized quantifier (Dawar in J Log Comput 5(2):213–226, 1995). It is somewhat surprising, then, that there have been few systematic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Unary quantifiers on finite models.Jouko Väänänen - 1997 - Journal of Logic, Language and Information 6 (3):275-304.
    In this paper (except in Section 5) all quantifiers are assumedto be so called simple unaryquantifiers, and all models are assumedto be finite. We give a necessary and sufficientcondition for a quantifier to be definablein terms of monotone quantifiers. For amonotone quantifier we give a necessaryand sufficient condition for beingdefinable in terms of a given set of bounded monotonequantifiers. Finally, we give a necessaryand sufficient condition for a monotonequantifier to be definable in terms of agiven monotone quantifier.Our analysis shows that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations