Switch to: References

Citations of:

On Deriving Nested Calculi for Intuitionistic Logics from Semantic Systems

In Sergei Artemov & Anil Nerode (eds.), Logical Foundations of Computer Science. Cham: pp. 177-194 (2020)

Add citations

You must login to add citations.
  1. Refining Labelled Systems for Modal and Constructive Logics with Applications.Tim Lyon - 2021 - Dissertation, Technischen Universität Wien
    This thesis introduces the "method of structural refinement", which serves as a means of transforming the relational semantics of a modal and/or constructive logic into an 'economical' proof system by connecting two proof-theoretic paradigms: labelled and nested sequent calculi. The formalism of labelled sequents has been successful in that cut-free calculi in possession of desirable proof-theoretic properties can be automatically generated for large classes of logics. Despite these qualities, labelled systems make use of a complicated syntax that explicitly incorporates the (...)
    Export citation  
  • On the Correspondence Between Nested Calculi and Semantic Systems for Intuitionistic Logics.Tim Lyon - 2021 - Journal of Logic and Computation 31 (1):213-265.
    This paper studies the relationship between labelled and nested calculi for propositional intuitionistic logic, first-order intuitionistic logic with non-constant domains and first-order intuitionistic logic with constant domains. It is shown that Fitting’s nested calculi naturally arise from their corresponding labelled calculi—for each of the aforementioned logics—via the elimination of structural rules in labelled derivations. The translational correspondence between the two types of systems is leveraged to show that the nested calculi inherit proof-theoretic properties from their associated labelled calculi, such as (...)
    Export citation  
    Bookmark   3 citations