Switch to: References

Add citations

You must login to add citations.
  1. Logic for physical space: From antiquity to present days.Marco Aiello, Guram Bezhanishvili, Isabelle Bloch & Valentin Goranko - 2012 - Synthese 186 (3):619-632.
    Since the early days of physics, space has called for means to represent, experiment, and reason about it. Apart from physicists, the concept of space has intrigued also philosophers, mathematicians and, more recently, computer scientists. This longstanding interest has left us with a plethora of mathematical tools developed to represent and work with space. Here we take a special look at this evolution by considering the perspective of Logic. From the initial axiomatic efforts of Euclid, we revisit the major milestones (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Spaces of types in positive model theory.Levon Haykazyan - 2019 - Journal of Symbolic Logic 84 (2):833-848.
    We introduce a notion of the space of types in positive model theory based on Stone duality for distributive lattices. We show that this space closely mirrors the Stone space of types in the full first-order model theory with negation (Tarskian model theory). We use this to generalise some classical results on countable models from the Tarskian setting to positive model theory.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Model-theory of vector-spaces over unspecified fields.David Pierce - 2009 - Archive for Mathematical Logic 48 (5):421-436.
    Vector spaces over unspecified fields can be axiomatized as one-sorted structures, namely, abelian groups with the relation of parallelism. Parallelism is binary linear dependence. When equipped with the n-ary relation of linear dependence for some positive integer n, a vector-space is existentially closed if and only if it is n-dimensional over an algebraically closed field. In the signature with an n-ary predicate for linear dependence for each positive integer n, the theory of infinite-dimensional vector spaces over algebraically closed fields is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations