Switch to: References

Citations of:

Scientific Explanation and Atomic Physics

University of Chicago Press, 1982 (1982)

Add citations

You must login to add citations.
  1. The Kantian framework of complementarity.Michael Cuffaro - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (4):309-317.
    A growing number of commentators have, in recent years, noted the important affinities in the views of Immanuel Kant and Niels Bohr. While these commentators are correct, the picture they present of the connections between Bohr and Kant is painted in broad strokes; it is open to the criticism that these affinities are merely superficial. In this essay, I provide a closer, structural, analysis of both Bohr's and Kant's views that makes these connections more explicit. In particular, I demonstrate the (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Indeterminacy and the limits of classical concepts: The transformation of Heisenberg's thought.Kristian Camilleri - 2007 - Perspectives on Science 15 (2):178-201.
    : This paper examines the transformation which occurs in Heisenberg's understanding of indeterminacy in quantum mechanics between 1926 and 1928. After his initial but unsuccessful attempt to construct new quantum concepts of space and time, in 1927 Heisenberg presented an operational definition of concepts such as 'position' and 'velocity'. Yet, after discussions with Bohr, he came to the realisation that classical concepts such as position and momentum are indispensable in quantum mechanics in spite of their limited applicability. This transformation in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Why Interpret Quantum Physics?Edward MacKinnon - 2016 - Open Journal of Philosophy 6 (1):86-102.
    This article probes the question of what interpretations of quantum mechanics actually accomplish. In other domains, which are briefly considered, interpretations serve to make alien systematizations intelligible to us. This often involves clarifying the status of their implicit ontology. A survey of interpretations of non-relativistic quantum mechanics supports the evaluation that these interpretations make a contribution to philosophy, but not to physics. Interpretations of quantum field theory are polarized by the divergence between the Lagrangian field theory that led to the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bohr’s Relational Holism and the classical-quantum Interaction.Mauro Dorato - 2016
    In this paper I present and critically discuss the main strategies that Bohr used and could have used to fend off the charge that his interpretation does not provide a clear-cut distinction between the classical and the quantum domain. In particular, in the first part of the paper I reassess the main arguments used by Bohr to advocate the indispensability of a classical framework to refer to quantum phenomena. In this respect, by using a distinction coming from an apparently unrelated (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the verge of umdeutung in minnesota: Van vleck and the correspondence principle.Anthony Duncan & Michel Janssen - unknown
    In October 1924, The Physical Review, a relatively minor journal at the time, published a remarkable two-part paper by John H. Van Vleck, working in virtual isolation at the University of Minnesota. Van Vleck used Bohr's correspondence principle and Einstein's quantum theory of radiation to find quantum formulae for the emission, absorption, and dispersion of radiation. The paper is similar but in many ways superior to the well-known paper by Kramers and Heisenberg published the following year that is widely credited (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Generating ontology: From quantum mechanics to quantum field theory.Edward MacKinnon - manuscript
    Philosophical interpretations of theories generally presuppose that a theory can be presented as a consistent mathematical formulation that is interpreted through models. Algebraic quantum field theory (AQFT) can fit this interpretative model. However, standard Lagrangian quantum field theory (LQFT), as well as quantum electrodynamics and nuclear physics, resists recasting along such formal lines. The difference has a distinct bearing on ontological issues. AQFT does not treat particle interactions or the standard model. This paper develops a framework and methodology for interpreting (...)
    Download  
     
    Export citation  
     
    Bookmark