Switch to: References

Add citations

You must login to add citations.
  1. Amalgamation Theorems in Algebraic Logic, an overview.Tarek Sayed-Ahmed - 2005 - Logic Journal of the IGPL 13 (3):277-286.
    We review, and in the process unify two techniques , for proving results concerning amalgamation in several classes studied in algebraic logic. The logical counterpart of these results adress interpolation and definability properties in modal and algebraic logic. Presenting them in a functorial context as adjoint situations, we show that both techniques can indeed be seen as instances of the use of the Keisler-Shelah ultrapower Theorem in proving Robinson's Joint Consistency Theorem. Some new results are surveyed. The results of this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Interpolation and amalgamation; pushing the limits. Part I.Judit X. Madarász - 1998 - Studia Logica 61 (3):311-345.
    Continuing work initiated by Jónsson, Daigneault, Pigozzi and others; Maksimova proved that a normal modal logic (with a single unary modality) has the Craig interpolation property iff the corresponding class of algebras has the superamalgamation property (cf. [Mak 91], [Mak 79]). The aim of this paper is to extend the latter result to a large class of logics. We will prove that the characterization can be extended to all algebraizable logics containing Boolean fragment and having a certain kind of local (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Omitting types for algebraizable extensions of first order logic.Tarek Sayed Ahmed - 2005 - Journal of Applied Non-Classical Logics 15 (4):465-489.
    We prove an Omitting Types Theorem for certain algebraizable extensions of first order logic without equality studied in [SAI 00] and [SAY 04]. This is done by proving a representation theorem preserving given countable sets of infinite meets for certain reducts of ?- dimensional polyadic algebras, the so-called G polyadic algebras (Theorem 5). Here G is a special subsemigroup of (?, ? o) that specifies the signature of the algebras in question. We state and prove an independence result connecting our (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations