Switch to: References

Add citations

You must login to add citations.
  1. Algebraic Logic, Where Does It Stand Today?Tarek Sayed Ahmed - 2005 - Bulletin of Symbolic Logic 11 (3):465-516.
    This is a survey article on algebraic logic. It gives a historical background leading up to a modern perspective. Central problems in algebraic logic (like the representation problem) are discussed in connection to other branches of logic, like modal logic, proof theory, model-theoretic forcing, finite combinatorics, and Gödel’s incompleteness results. We focus on cylindric algebras. Relation algebras and polyadic algebras are mostly covered only insofar as they relate to cylindric algebras, and even there we have not told the whole story. (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Varying interpolation and amalgamation in polyadic MV-algebras.Tarek Sayed Ahmed - 2015 - Journal of Applied Non-Classical Logics 25 (2):140-192.
    We prove several interpolation theorems for many-valued infinitary logic with quantifiers by studying expansions of MV-algebras in the spirit of polyadic and cylindric algebras. We prove for various reducts of polyadic MV-algebras of infinite dimensions that if is the free algebra in the given signature,, is in the subalgebra of generated by, is in the subalgebra of generated by and, then there exists an interpolant in the subalgebra generated by and such that. We call this a varying interpolation property because (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Omitting types algebraically and more about amalgamation for modal cylindric algebras.Tarek Sayed Ahmed - 2021 - Mathematical Logic Quarterly 67 (3):295-312.
    Let α be an arbitrary infinite ordinal, and. In [26] we studied—using algebraic logic—interpolation and amalgamation for an extension of first order logic, call it, with α many variables, using a modal operator of a unimodal logic that contributes to the semantics. Our algebraic apparatus was the class of modal cylindric algebras. Modal cylindric algebras, briefly, are cylindric algebras of dimension α, expanded with unary modalities inheriting their semantics from a unimodal logic such as, or. When modal cylindric algebras based (...)
    Download  
     
    Export citation  
     
    Bookmark