Switch to: References

Add citations

You must login to add citations.
  1. A parallel to the null ideal for inaccessible $$\lambda $$ λ : Part I.Saharon Shelah - 2017 - Archive for Mathematical Logic 56 (3-4):319-383.
    It is well known how to generalize the meagre ideal replacing ℵ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph _0$$\end{document} by a cardinal λ>ℵ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda > \aleph _0$$\end{document} and requiring the ideal to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$$$\end{document}-complete. But can we generalize the null ideal? In terms of forcing, this means finding a forcing notion similar to the random real forcing, replacing ℵ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations