Switch to: References

Add citations

You must login to add citations.
  1. Tabularity and Post-Completeness in Tense Logic.Qian Chen & M. A. Minghui - 2024 - Review of Symbolic Logic 17 (2):475-492.
    A new characterization of tabularity in tense logic is established, namely, a tense logic L is tabular if and only if $\mathsf {tab}_n^T\in L$ for some $n\geq 1$. Two characterization theorems for the Post-completeness in tabular tense logics are given. Furthermore, a characterization of the Post-completeness in the lattice of all tense logics is established. Post numbers of some tense logics are shown.
    Download  
     
    Export citation  
     
    Bookmark  
  • Finite Model Property in Weakly Transitive Tense Logics.Minghui Ma & Qian Chen - 2023 - Studia Logica 111 (2):217-250.
    The finite model property (FMP) in weakly transitive tense logics is explored. Let \(\mathbb {S}=[\textsf{wK}_t\textsf{4}, \textsf{K}_t\textsf{4}]\) be the interval of tense logics between \(\textsf{wK}_t\textsf{4}\) and \(\textsf{K}_t\textsf{4}\). We introduce the modal formula \(\textrm{t}_0^n\) for each \(n\ge 1\). Within the class of all weakly transitive frames, \(\textrm{t}_0^n\) defines the class of all frames in which every cluster has at most _n_ irreflexive points. For each \(n\ge 1\), we define the interval \(\mathbb {S}_n=[\textsf{wK}_t\textsf{4T}_0^{n+1}, \textsf{wK}_t\textsf{4T}_0^{n}]\) which is a subset of \(\mathbb {S}\). There are (...)
    Download  
     
    Export citation  
     
    Bookmark