Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Learning Alignments and Leveraging Natural Logic.Nathanael Chambers, Daniel Cer, Trond Grenager, David Hall, Chloe Kiddon, Bill MacCartney, Marie-Catherine de Marneffe, Daniel Ramage, Eric Yeh & Christopher D. Manning - unknown
    We describe an approach to textual inference that improves alignments at both the typed dependency level and at a deeper semantic level. We present a machine learning approach to alignment scoring, a stochastic search procedure, and a new tool that finds deeper semantic alignments, allowing rapid development of semantic features over the aligned graphs. Further, we describe a complementary semantic component based on natural logic, which shows an added gain of 3.13% accuracy on the RTE3 test set.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Modeling Semantic Containment and Exclusion in Natural Language Inference.Christopher D. Manning - unknown
    We propose an approach to natural language inference based on a model of natural logic, which identifies valid inferences by their lexical and syntactic features, without full semantic interpretation. We greatly extend past work in natural logic, which has focused solely on semantic containment and monotonicity, to incorporate both semantic exclusion and implicativity. Our system decomposes an inference problem into a sequence of atomic edits linking premise to hypothesis; predicts a lexical entailment relation for each edit using a statistical classifier; (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Natural Logic for Textual Inference.Christopher D. Manning - unknown
    This paper presents the first use of a computational model of natural logic—a system of logical inference which operates over natural language—for textual inference. Most current approaches to the PAS- CAL RTE textual inference task achieve robustness by sacrificing semantic precision; while broadly effective, they are easily confounded by ubiquitous inferences involving monotonicity. At the other extreme, systems which rely on first-order logic and theorem proving are precise, but excessively brittle. This work aims at a middle way. Our system finds (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Generating Typed Dependency Parses from Phrase Structure Parses.Christopher Manning - unknown
    This paper describes a system for extracting typed dependency parses of English sentences from phrase structure parses. In order to capture inherent relations occurring in corpus texts that can be critical in real-world applications, many NP relations are included in the set of grammatical relations used. We provide a comparison of our system with Minipar and the Link parser. The typed dependency extraction facility described here is integrated in the Stanford Parser, available for download.
    Download  
     
    Export citation  
     
    Bookmark   8 citations