Switch to: References

Add citations

You must login to add citations.
  1. Natural Logic for Textual Inference.Christopher D. Manning - unknown
    This paper presents the first use of a computational model of natural logic—a system of logical inference which operates over natural language—for textual inference. Most current approaches to the PAS- CAL RTE textual inference task achieve robustness by sacrificing semantic precision; while broadly effective, they are easily confounded by ubiquitous inferences involving monotonicity. At the other extreme, systems which rely on first-order logic and theorem proving are precise, but excessively brittle. This work aims at a middle way. Our system finds (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • An extended model of natural logic.Christopher D. Manning & Bill MacCartney - unknown
    We propose a model of natural language inference which identifies valid inferences by their lexical and syntactic features, without full semantic interpretation. We extend past work in natural logic, which has focused on semantic containment and monotonicity, by incorporating both semantic exclusion and implicativity. Our model decomposes an inference problem into a sequence of atomic edits linking premise to hypothesis; predicts a lexical semantic relation for each edit; propagates these relations upward through a semantic composition tree according to properties of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Modeling Semantic Containment and Exclusion in Natural Language Inference.Christopher D. Manning - unknown
    We propose an approach to natural language inference based on a model of natural logic, which identifies valid inferences by their lexical and syntactic features, without full semantic interpretation. We greatly extend past work in natural logic, which has focused solely on semantic containment and monotonicity, to incorporate both semantic exclusion and implicativity. Our system decomposes an inference problem into a sequence of atomic edits linking premise to hypothesis; predicts a lexical entailment relation for each edit using a statistical classifier; (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Finding contradictions in text.Christopher Manning - manuscript
    Marie-Catherine de Marneffe, Anna N. Rafferty and Christopher D. Manning Linguistics Department Computer Science Department Stanford University Stanford University Stanford, CA 94305 Stanford, CA 94305 {rafferty,manning}@stanford.edu [email protected]..
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Phrase-Based Alignment Model for Natural Language Inference.Christopher D. Manning - unknown
    The alignment problem—establishing links between corresponding phrases in two related sentences—is as important in natural language inference (NLI) as it is in machine translation (MT). But the tools and techniques of MT alignment do not readily transfer to NLI, where one cannot assume semantic equivalence, and for which large volumes of bitext are lacking. We present a new NLI aligner, the MANLI system, designed to address these challenges. It uses a phrase-based alignment representation, exploits external lexical resources, and capitalizes on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Solving the problem of cascading errors: Approximate bayesian inference for linguistic annotation pipelines.Christopher Manning - manuscript
    mentation for languages such as Chinese. Almost no NLP task is truly standalone. The end-to-end performance of natural Most current systems for higher-level, aggre-.
    Download  
     
    Export citation  
     
    Bookmark  
  • Robust Machine Translation Evaluation with Entailment Features.Chris Manning - unknown
    Existing evaluation metrics for machine translation lack crucial robustness: their correlations with human quality judgments vary considerably across languages and genres. We believe that the main reason is their inability to properly capture meaning: A good translation candidate means the same thing as the reference translation, regardless of formulation. We propose a metric that evaluates MT output based on a rich set of features motivated by textual entailment, such as lexical-semantic (in-)compatibility and argument structure overlap. We compare this metric against (...)
    Download  
     
    Export citation  
     
    Bookmark