Switch to: References

Add citations

You must login to add citations.
  1. Comparing Mathematical Explanations.Isaac Wilhelm - 2023 - British Journal for the Philosophy of Science 74 (1):269-290.
    Philosophers have developed several detailed accounts of what makes some mathematical proofs explanatory. Significantly less attention has been paid, however, to what makes some proofs more explanatory than other proofs. That is problematic, since the reasons for thinking that some proofs explain are also reasons for thinking that some proofs are more explanatory than others. So in this paper, I develop an account of comparative explanation in mathematics. I propose a theory of the `at least as explanatory as' relation among (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophy of the Matrix.A. C. Paseau - 2017 - Philosophia Mathematica 25 (2):246-267.
    A mathematical matrix is usually defined as a two-dimensional array of scalars. And yet, as I explain, matrices are not in fact two-dimensional arrays. So are we to conclude that matrices do not exist? I show how to resolve the puzzle, for both contemporary and older mathematics. The solution generalises to the interpretation of all mathematical discourse. The paper as a whole attempts to reinforce mathematical structuralism by reflecting on how best to interpret mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Gauge symmetry and the Theta vacuum.Richard Healey - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences · Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 105--116.
    According to conventional wisdom, local gauge symmetry is not a symmetry of nature, but an artifact of how our theories represent nature. But a study of the so-called theta-vacuum appears to refute this view. The ground state of a quantized non-Abelian Yang-Mills gauge theory is characterized by a real-valued, dimensionless parameter theta—a fundamental new constant of nature. The structure of this vacuum state is often said to arise from a degeneracy of the vacuum of the corresponding classical theory, which degeneracy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Three Roles of Empirical Information in Philosophy: Intuitions on Mathematics do Not Come for Free.Deniz Sarikaya, José Antonio Pérez-Escobar & Deborah Kant - 2021 - Kriterion – Journal of Philosophy 35 (3):247-278.
    This work gives a new argument for ‘Empirical Philosophy of Mathematical Practice’. It analyses different modalities on how empirical information can influence philosophical endeavours. We evoke the classical dichotomy between “armchair” philosophy and empirical/experimental philosophy, and claim that the latter should in turn be subdivided in three distinct styles: Apostate speculator, Informed analyst, and Freeway explorer. This is a shift of focus from the source of the information towards its use by philosophers. We present several examples from philosophy of mind/science (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Policies, Technology and Markets: Legal Implications of Their Mathematical Infrastructures.Marcus Faro de Castro - 2019 - Law and Critique 30 (1):91-114.
    The paper discusses legal implications of the expansion of practical uses of mathematics in social life. Taking as a starting point the omnipresence of mathematical infrastructures underlying policies, technology and markets, the paper proceeds by attending to relevant materials offered by general philosophy, legal philosophy, and the history and philosophy of mathematics. The paper suggests that the modern transformation of mathematics and its practical applications have spurred the emergence of multiple useful technologies and forms of social interaction but have impoverished (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of mathematics: Making a fresh start.Carlo Cellucci - 2013 - Studies in History and Philosophy of Science Part A 44 (1):32-42.
    The paper distinguishes between two kinds of mathematics, natural mathematics which is a result of biological evolution and artificial mathematics which is a result of cultural evolution. On this basis, it outlines an approach to the philosophy of mathematics which involves a new treatment of the method of mathematics, the notion of demonstration, the questions of discovery and justification, the nature of mathematical objects, the character of mathematical definition, the role of intuition, the role of diagrams in mathematics, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • On Euclidean diagrams and geometrical knowledge.Tamires Dal Magro & Manuel J. García-Pérez - 2019 - Theoria. An International Journal for Theory, History and Foundations of Science 34 (2):255.
    We argue against the claim that the employment of diagrams in Euclidean geometry gives rise to gaps in the proofs. First, we argue that it is a mistake to evaluate its merits through the lenses of Hilbert’s formal reconstruction. Second, we elucidate the abilities employed in diagram-based inferences in the Elements and show that diagrams are mathematically reputable tools. Finally, we complement our analysis with a review of recent experimental results purporting to show that, not only is the Euclidean diagram-based (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert, completeness and geometry.Giorgio Venturi - 2011 - Rivista Italiana di Filosofia Analitica Junior 2 (2):80-102.
    This paper aims to show how the mathematical content of Hilbert's Axiom of Completeness consists in an attempt to solve the more general problem of the relationship between intuition and formalization. Hilbert found the accordance between these two sides of mathematical knowledge at a logical level, clarifying the necessary and sufficient conditions for a good formalization of geometry. We will tackle the problem of what is, for Hilbert, the definition of geometry. The solution of this problem will bring out how (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Interest of Philosophy of Mathematics (Education).Karen François - 2024 - Philosophia Mathematica 32 (1):137-142.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Knowledge and the Interplay of Practices.Jose Ferreiros - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences · Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 55--64.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • A Problem with the Dependence of Informal Proofs on Formal Proofs.Fenner Tanswell - 2015 - Philosophia Mathematica 23 (3):295-310.
    Derivationists, those wishing to explain the correctness and rigour of informal proofs in terms of associated formal proofs, are generally held to be supported by the success of the project of translating informal proofs into computer-checkable formal counterparts. I argue, however, that this project is a false friend for the derivationists because there are too many different associated formal proofs for each informal proof, leading to a serious worry of overgeneration. I press this worry primarily against Azzouni's derivation-indicator account, but (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • How to think about informal proofs.Brendan Larvor - 2012 - Synthese 187 (2):715-730.
    It is argued in this study that (i) progress in the philosophy of mathematical practice requires a general positive account of informal proof; (ii) the best candidate is to think of informal proofs as arguments that depend on their matter as well as their logical form; (iii) articulating the dependency of informal inferences on their content requires a redefinition of logic as the general study of inferential actions; (iv) it is a decisive advantage of this conception of logic that it (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Depth and Clarity * Felix Muhlholzer. Braucht die Mathematik eine Grundlegung? Eine Kommentar des Teils III von Wittgensteins Bemerkungen uber die Grundlagen der Mathematik [Does Mathematics need a Foundation? A Commentary on Part III of Wittgenstein's Remarks on the Foundations of Mathematics]. Frankfurt: Vittorio Klostermann, 2010. ISBN: 978-3-465-03667-8. Pp. xiv + 602. [REVIEW]Juliet Floyd - 2015 - Philosophia Mathematica 23 (2):255-276.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Proofs, Mathematical Practice and Argumentation.Begoña Carrascal - 2015 - Argumentation 29 (3):305-324.
    In argumentation studies, almost all theoretical proposals are applied, in general, to the analysis and evaluation of argumentative products, but little attention has been paid to the creative process of arguing. Mathematics can be used as a clear example to illustrate some significant theoretical differences between mathematical practice and the products of it, to differentiate the distinct components of the arguments, and to emphasize the need to address the different types of argumentative discourse and argumentative situation in the practice. I (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Top-Down and Bottom-Up Philosophy of Mathematics.Carlo Cellucci - 2013 - Foundations of Science 18 (1):93-106.
    The philosophy of mathematics of the last few decades is commonly distinguished into mainstream and maverick, to which a ‘third way’ has been recently added, the philosophy of mathematical practice. In this paper the limitations of these trends in the philosophy of mathematics are pointed out, and it is argued that they are due to the fact that all of them are based on a top-down approach, that is, an approach which explains the nature of mathematics in terms of some (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations