Switch to: References

Add citations

You must login to add citations.
  1. Modeling Human Morphological Competence.Yohei Oseki & Alec Marantz - 2020 - Frontiers in Psychology 11.
    One of the central debates in the cognitive science of language has revolved around the nature of human linguistic competence. Whether syntactic competence should be characterized by abstract hierarchical structures or reduced to surface linear strings has been actively debated, but the nature of morphological competence has been insufficiently appreciated despite the parallel question in the cognitive science literature. In this paper, in order to investigate whether morphological competence should be characterized by abstract hierarchical structures, we conducted the crowdsourced acceptability (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Compounding as Abstract Operation in Semantic Space: Investigating relational effects through a large-scale, data-driven computational model.Marco Marelli, Christina L. Gagné & Thomas L. Spalding - 2017 - Cognition 166:207-224.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mining a Crowdsourced Dictionary to Understand Consistency and Preference in Word Meanings.Brendan T. Johns - 2019 - Frontiers in Psychology 10.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Social Media and Language Processing: How Facebook and Twitter Provide the Best Frequency Estimates for Studying Word Recognition.Herdağdelen Amaç & Marelli Marco - 2017 - Cognitive Science 41 (4):976-995.
    Corpus-based word frequencies are one of the most important predictors in language processing tasks. Frequencies based on conversational corpora are shown to better capture the variance in lexical decision tasks compared to traditional corpora. In this study, we show that frequencies computed from social media are currently the best frequency-based estimators of lexical decision reaction times. The results are robust and are still substantial when we control for corpus size.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Grounding the neurobiology of language in first principles: The necessity of non-language-centric explanations for language comprehension.Uri Hasson, Giovanna Egidi, Marco Marelli & Roel M. Willems - 2018 - Cognition 180 (C):135-157.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Discriminative Lexicon: A Unified Computational Model for the Lexicon and Lexical Processing in Comprehension and Production Grounded Not in Composition but in Linear Discriminative Learning.R. Harald Baayen, Yu-Ying Chuang, Elnaz Shafaei-Bajestan & James P. Blevins - 2019 - Complexity 2019:1-39.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Distributional semantic approaches for derivational morphology.Marine Wauquier - 2022 - Corpus 23.
    Cet article dresse un état des lieux de l’utilisation de la sémantique distributionnelle en morphologie. L’approche distributionnelle, qui repose sur une représentation vectorielle du sens des mots, s’intègre dans l’évolution empirique que connaît la morphologie depuis quelques années, en contribuant par une analyse quantitative et basée sur les corpus du sens des mots morphologiquement construits. Nous présentons brièvement cette approche, puis nous donnons un aperçu de la diversité de ses utilisations pour la morphologie dérivationnelle, tant théorique que méthodologique. Nous soulignons (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Exploring What Is Encoded in Distributional Word Vectors: A Neurobiologically Motivated Analysis.Akira Utsumi - 2020 - Cognitive Science 44 (6):e12844.
    The pervasive use of distributional semantic models or word embeddings for both cognitive modeling and practical application is because of their remarkable ability to represent the meanings of words. However, relatively little effort has been made to explore what types of information are encoded in distributional word vectors. Knowing the internal knowledge embedded in word vectors is important for cognitive modeling using distributional semantic models. Therefore, in this paper, we attempt to identify the knowledge encoded in word vectors by conducting (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations