Switch to: References

Add citations

You must login to add citations.
  1. Uniform bounds on growth in o-minimal structures.Janak Ramakrishnan - 2010 - Mathematical Logic Quarterly 56 (4):406-408.
    We prove that a function definable with parameters in an o-minimal structure is bounded away from ∞ as its argument goes to ∞ by a function definable without parameters, and that this new function can be chosen independently of the parameters in the original function. This generalizes a result in [1]. Moreover, this remains true if the argument is taken to approach any element of the structure , and the function has limit any element of the structure.
    Download  
     
    Export citation  
     
    Bookmark  
  • Definable functions continuous on curves in o-minimal structures.Janak Ramakrishnan - 2014 - Annals of Pure and Applied Logic 165 (7-8):1339-1351.
    We give necessary and sufficient conditions on a non-oscillatory curve in an o-minimal field such that, for any bounded definable function, the germ of the function on an initial segment of the curve has a definable extension to a closed set. This situation is translated into a question about types: What are the conditions on an n-type such that, for any bounded definable function, the germ of the function on the type has a definable continuous global extension? Certain categories of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • One-basedness and groups of the form G/G00.Davide Penazzi - 2011 - Archive for Mathematical Logic 50 (7-8):743-758.
    We initiate a geometric stability study of groups of the form G/G00, where G is a 1-dimensional definably compact, definably connected, definable group in a real closed field M. We consider an enriched structure M′ with a predicate for G00 and check 1-basedness or non-1-basedness for G/G00, where G is an additive truncation of M, a multiplicative truncation of M, SO2(M) or one of its truncations; such groups G/G00 are now interpretable in M′. We prove that the only 1-based groups (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Arithmetic of Dedekind cuts of ordered Abelian groups.Antongiulio Fornasiero & Marcello Mamino - 2008 - Annals of Pure and Applied Logic 156 (2):210-244.
    We study Dedekind cuts on ordered Abelian groups. We introduce a monoid structure on them, and we characterise, via a suitable representation theorem, the universal part of the theory of such structures.
    Download  
     
    Export citation  
     
    Bookmark  
  • The elementary theory of Dedekind cuts in polynomially bounded structures.Marcus Tressl - 2005 - Annals of Pure and Applied Logic 135 (1-3):113-134.
    Let M be a polynomially bounded, o-minimal structure with archimedean prime model, for example if M is a real closed field. Let C be a convex and unbounded subset of M. We determine the first order theory of the structure M expanded by the set C. We do this also over any given set of parameters from M, which yields a description of all subsets of Mn, definable in the expanded structure.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Pseudo completions and completions in stages of o-minimal structures.Marcus Tressl - 2006 - Archive for Mathematical Logic 45 (8):983-1009.
    For an o-minimal expansion R of a real closed field and a set $\fancyscript{V}$ of Th(R)-convex valuation rings, we construct a “pseudo completion” with respect to $\fancyscript{V}$ . This is an elementary extension S of R generated by all completions of all the residue fields of the $V \in \fancyscript{V}$ , when these completions are embedded into a big elementary extension of R. It is shown that S does not depend on the various embeddings up to an R-isomorphism. For polynomially (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation