Switch to: References

Add citations

You must login to add citations.
  1. Two‐cardinal diamond star.Pierre Matet - 2014 - Mathematical Logic Quarterly 60 (4-5):246-265.
    Our main results are: (A) It is consistent relative to a large cardinal that holds but fails. (B) If holds and are two infinite cardinals such that and λ carries a good scale, then holds. (C) If are two cardinals such that κ is λ‐Shelah and, then there is no good scale for λ.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The secret life of μ-clubs.Pierre Matet - 2022 - Annals of Pure and Applied Logic 173 (9):103162.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.
    Let μ,κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu, \kappa}$$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda}$$\end{document} be three uncountable cardinals such that μ=cf<κ=cf<λ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu = {\rm cf} < \kappa = {\rm cf} < \lambda.}$$\end{document} The game ideal NGκ,λμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${NG_{\kappa,\lambda}^\mu}$$\end{document} is a normal ideal on Pκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P_\kappa }$$\end{document} defined using games (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Non-saturation of the nonstationary ideal on Pκ(λ) in case κ ≤ cf (λ) < λ.Pierre Matet - 2012 - Archive for Mathematical Logic 51 (3-4):425-432.
    Given a regular cardinal κ > ω1 and a cardinal λ with κ ≤ cf (λ) < λ, we show that NSκ,λ | T is not λ+-saturated, where T is the set of all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a\in P_\kappa (\lambda)}$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${| a | = | a \cap \kappa|}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm cf} \big( {\rm sup} (a\cap\kappa)\big) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Guessing more sets.Pierre Matet - 2015 - Annals of Pure and Applied Logic 166 (10):953-990.
    Download  
     
    Export citation  
     
    Bookmark   6 citations