Switch to: References

Add citations

You must login to add citations.
  1. A cardinal preserving extension making the set of points of countable V cofinality nonstationary.Moti Gitik, Itay Neeman & Dima Sinapova - 2007 - Archive for Mathematical Logic 46 (5-6):451-456.
    Assuming large cardinals we produce a forcing extension of V which preserves cardinals, does not add reals, and makes the set of points of countable V cofinality in κ+ nonstationary. Continuing to force further, we obtain an extension in which the set of points of countable V cofinality in ν is nonstationary for every regular ν ≥ κ+. Finally we show that our large cardinal assumption is optimal.
    Download  
     
    Export citation  
     
    Bookmark  
  • Maximality Principles in Set Theory.Luca Incurvati - 2017 - Philosophia Mathematica 25 (2):159-193.
    In set theory, a maximality principle is a principle that asserts some maximality property of the universe of sets or some part thereof. Set theorists have formulated a variety of maximality principles in order to settle statements left undecided by current standard set theory. In addition, philosophers of mathematics have explored maximality principles whilst attempting to prove categoricity theorems for set theory or providing criteria for selecting foundational theories. This article reviews recent work concerned with the formulation, investigation and justification (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Aronszajn trees and failure of the singular cardinal hypothesis.Itay Neeman - 2009 - Journal of Mathematical Logic 9 (1):139-157.
    The tree property at κ+ states that there are no Aronszajn trees on κ+, or, equivalently, that every κ+ tree has a cofinal branch. For singular strong limit cardinals κ, there is tension between the tree property at κ+ and failure of the singular cardinal hypothesis at κ; the former is typically the result of the presence of strongly compact cardinals in the background, and the latter is impossible above strongly compacts. In this paper, we reconcile the two. We prove (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Aronszajn trees, square principles, and stationary reflection.Chris Lambie-Hanson - 2017 - Mathematical Logic Quarterly 63 (3-4):265-281.
    We investigate questions involving Aronszajn trees, square principles, and stationary reflection. We first consider two strengthenings of introduced by Brodsky and Rinot for the purpose of constructing κ‐Souslin trees. Answering a question of Rinot, we prove that the weaker of these strengthenings is compatible with stationary reflection at κ but the stronger is not. We then prove that, if μ is a singular cardinal, implies the existence of a special ‐tree with a cf(μ)‐ascent path, thus answering a question of Lücke.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Simple proofs of $${\mathsf{SCH}}$$ SCH from reflection principles without using better scales.Hiroshi Sakai - 2015 - Archive for Mathematical Logic 54 (5-6):639-647.
    We give simple proofs of the Singular Cardinal Hypothesis from the Weak Reflection Principle and the Fodor-type Reflection Principle which do not use better scales.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Forcing the Mapping Reflection Principle by finite approximations.Tadatoshi Miyamoto & Teruyuki Yorioka - 2021 - Archive for Mathematical Logic 60 (6):737-748.
    Moore introduced the Mapping Reflection Principle and proved that the Bounded Proper Forcing Axiom implies that the size of the continuum is ℵ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph _2$$\end{document}. The Mapping Reflection Principle follows from the Proper Forcing Axiom. To show this, Moore utilized forcing notions whose conditions are countable objects. Chodounský–Zapletal introduced the Y-Proper Forcing Axiom that is a weak fragments of the Proper Forcing Axiom but implies some important conclusions from the Proper Forcing Axiom, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Forcing axioms, supercompact cardinals, singular cardinal combinatorics.Matteo Viale - 2008 - Bulletin of Symbolic Logic 14 (1):99-113.
    The purpose of this communication is to present some recent advances on the consequences that forcing axioms and large cardinals have on the combinatorics of singular cardinals. I will introduce a few examples of problems in singular cardinal combinatorics which can be fruitfully attacked using ideas and techniques coming from the theory of forcing axioms and then translate the results so obtained in suitable large cardinals properties.The first example I will treat is the proof that the proper forcing axiom PFA (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Squares and covering matrices.Chris Lambie-Hanson - 2014 - Annals of Pure and Applied Logic 165 (2):673-694.
    Viale introduced covering matrices in his proof that SCH follows from PFA. In the course of the proof and subsequent work with Sharon, he isolated two reflection principles, CP and S, which, under certain circumstances, are satisfied by all covering matrices of a certain shape. Using square sequences, we construct covering matrices for which CP and S fail. This leads naturally to an investigation of square principles intermediate between □κ and □ for a regular cardinal κ. We provide a detailed (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations