Switch to: References

Citations of:

Three roads to objective probability1

In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford University Press. pp. 293 (2011)

Add citations

You must login to add citations.
  1. Difference-making and deterministic chance.Harjit Bhogal - 2020 - Philosophical Studies 178 (7):2215-2235.
    Why do we value higher-level scientific explanations if, ultimately, the world is physical? An attractive answer is that physical explanations often cite facts that don’t make a difference to the event in question. I claim that to properly develop this view we need to commit to a type of deterministic chance. And in doing so, we see the theoretical utility of deterministic chance, giving us reason to accept a package of views including deterministic chance.
    Download  
     
    Export citation  
     
    Bookmark  
  • Local Causality, Probability and Explanation.Richard A. Healey - 2016 - In Mary Bell & Shan Gao (eds.), Quantum Nonlocality and Reality: 50 Years of Bell's Theorem. Cambridge University Press. pp. 172 - 194.
    In papers published in the 25 years following his famous 1964 proof John Bell refined and reformulated his views on locality and causality. Although his formulations of local causality were in terms of probability, he had little to say about that notion. But assumptions about probability are implicit in his arguments and conclusions. Probability does not conform to these assumptions when quantum mechanics is applied to account for the particular correlations Bell argues are locally inexplicable. This account involves no superluminal (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Typical: A Theory of Typicality and Typicality Explanation.Isaac Wilhelm - 2022 - British Journal for the Philosophy of Science 73 (2):561-581.
    Typicality is routinely invoked in everyday contexts: bobcats are typically short-tailed; people are typically less than seven feet tall. Typicality is invoked in scientific contexts as well: typical gases expand; typical quantum systems exhibit probabilistic behaviour. And typicality facts like these support many explanations, both quotidian and scientific. But what is it for something to be typical? And how do typicality facts explain? In this paper, I propose a general theory of typicality. I analyse the notion of a typical property. (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Did the Universe Have a Chance?C. D. McCoy - 2019 - Philosophy of Science 86 (5):1262-1272.
    In a world awash in statistical patterns, should we conclude that the universe’s evolution or genesis is somehow subject to chance? I draw attention to alternatives that must be acknowledged if we are to have an adequate assessment of what chance the universe might have had.
    Download  
     
    Export citation  
     
    Bookmark  
  • Interpretive analogies between quantum and statistical mechanics.C. D. McCoy - 2020 - European Journal for Philosophy of Science 10 (1):9.
    The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive ontology (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The ergodic hierarchy.Roman Frigg & Joseph Berkovitz - 2011 - Stanford Encyclopedia of Philosophy.
    The so-called ergodic hierarchy (EH) is a central part of ergodic theory. It is a hierarchy of properties that dynamical systems can possess. Its five levels are egrodicity, weak mixing, strong mixing, Kolomogorov, and Bernoulli. Although EH is a mathematical theory, its concepts have been widely used in the foundations of statistical physics, accounts of randomness, and discussions about the nature of chaos. We introduce EH and discuss how its applications in these fields.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Objective and Subjective Probability in Gene Expression.Joel D. Velasco - 2012 - Progress in Biophysics and Molecular Biology 110:5-10.
    In this paper I address the question of whether the probabilities that appear in models of stochastic gene expression are objective or subjective. I argue that while our best models of the phenomena in question are stochastic models, this fact should not lead us to automatically assume that the processes are inherently stochastic. After distinguishing between models and reality, I give a brief introduction to the philosophical problem of the interpretation of probability statements. I argue that the objective vs. subjective (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The physics and metaphysics of Tychistic Bohmian Mechanics.Patrick Duerr & Alexander Ehmann - 2021 - Studies in History and Philosophy of Science Part A 90:168-183.
    The paper takes up Bell's “Everett theory” and develops it further. The resulting theory is about the system of all particles in the universe, each located in ordinary, 3-dimensional space. This many-particle system as a whole performs random jumps through 3N-dimensional configuration space – hence “Tychistic Bohmian Mechanics”. The distribution of its spontaneous localisations in configuration space is given by the Born Rule probability measure for the universal wavefunction. Contra Bell, the theory is argued to satisfy the minimal desiderata for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Probabilities in deBroglie-Bohm Theory: Towards a Stochastic Alternative (Version 0.1 beta).Patrick Dürr & Alexander Ehmann - manuscript
    We critically examine the role and status probabilities, as they enter via the Quantum Equilibrium Hypothesis, play in the standard, deterministic interpretation of deBroglie’s and Bohm’s Pilot Wave Theory (dBBT), by considering interpretations of probabilities in terms of ignorance, typicality and Humean Best Systems, respectively. We argue that there is an inherent conflict between dBBT and probabilities, thus construed. The conflict originates in dBBT’s deterministic nature, rooted in the Guidance Equation. Inquiring into the latter’s role within dBBT, we find it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Unsharp Best System Chances.Luke Fenton-Glynn - unknown
    Much recent philosophical attention has been devoted to variants on the Best System Analysis of laws and chance. In particular, philosophers have been interested in the prospects of such Best System Analyses for yielding *high-level* laws and chances. Nevertheless, a foundational worry about BSAs lurks: there do not appear to be uniquely appropriate measures of the degree to which a system exhibits theoretical virtues, such as simplicity and strength. Nor does there appear to be a uniquely correct exchange rate at (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation