Switch to: References

Add citations

You must login to add citations.
  1. The Dividing Line Methodology: Model Theory Motivating Set Theory.John T. Baldwin - 2021 - Theoria 87 (2):361-393.
    We explore Shelah's model‐theoretic dividing line methodology. In particular, we discuss how problems in model theory motivated new techniques in model theory, for example classifying theories by their potential (consistently with Zermelo–Fraenkel set theory with the axiom of choice (ZFC)) spectrum of cardinals in which there is a universal model. Two other examples are the study (with Malliaris) of the Keisler order leading to a new ZFC result on cardinal invariants and attempts to clarify the “main gap” by reducing the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Some Stable Non-Elementary Classes of Modules.Marcos Mazari-Armida - 2023 - Journal of Symbolic Logic 88 (1):93-117.
    Fisher [10] and Baur [6] showed independently in the seventies that if T is a complete first-order theory extending the theory of modules, then the class of models of T with pure embeddings is stable. In [25, 2.12], it is asked if the same is true for any abstract elementary class $(K, \leq _p)$ such that K is a class of modules and $\leq _p$ is the pure submodule relation. In this paper we give some instances where this is true:Theorem.Assume (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Note on Torsion Modules with Pure Embeddings.Marcos Mazari-Armida - 2023 - Notre Dame Journal of Formal Logic 64 (4):407-424.
    We study Martsinkovsky–Russell torsion modules with pure embeddings as an abstract elementary class. We give a model-theoretic characterization of the pure-injective and the Σ-pure-injective modules relative to the class of torsion modules assuming that the torsion submodule is a pure submodule. Our characterization of relative Σ-pure-injective modules extends the classical characterization of Gruson and Jenson as well as Zimmermann. We study the limit models of the class and determine when the class is superstable assuming that the torsion submodule is a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Superstability, noetherian rings and pure-semisimple rings.Marcos Mazari-Armida - 2021 - Annals of Pure and Applied Logic 172 (3):102917.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Stability Results Assuming Tameness, Monster Model, and Continuity of Nonsplitting.Samson Leung - 2024 - Journal of Symbolic Logic 89 (1):383-425.
    Assuming the existence of a monster model, tameness, and continuity of nonsplitting in an abstract elementary class (AEC), we extend known superstability results: let $\mu>\operatorname {LS}(\mathbf {K})$ be a regular stability cardinal and let $\chi $ be the local character of $\mu $ -nonsplitting. The following holds: 1.When $\mu $ -nonforking is restricted to $(\mu,\geq \chi )$ -limit models ordered by universal extensions, it enjoys invariance, monotonicity, uniqueness, existence, extension, and continuity. It also has local character $\chi $. This generalizes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On universal modules with pure embeddings.Thomas G. Kucera & Marcos Mazari-Armida - 2020 - Mathematical Logic Quarterly 66 (4):395-408.
    We show that certain classes of modules have universal models with respect to pure embeddings: Let R be a ring, T a first‐order theory with an infinite model extending the theory of R‐modules and (where ⩽pp stands for “pure submodule”). Assume has the joint embedding and amalgamation properties. If or, then has a universal model of cardinality λ. As a special case, we get a recent result of Shelah [28, 1.2] concerning the existence of universal reduced torsion‐free abelian groups with (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Simple-like independence relations in abstract elementary classes.Rami Grossberg & Marcos Mazari-Armida - 2021 - Annals of Pure and Applied Logic 172 (7):102971.
    Download  
     
    Export citation  
     
    Bookmark   3 citations