Switch to: References

Add citations

You must login to add citations.
  1. A dedekind finite borel set.Arnold W. Miller - 2011 - Archive for Mathematical Logic 50 (1-2):1-17.
    In this paper we prove three theorems about the theory of Borel sets in models of ZF without any form of the axiom of choice. We prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B\subseteq 2^\omega}$$\end{document} is a Gδσ-set then either B is countable or B contains a perfect subset. Second, we prove that if 2ω is the countable union of countable sets, then there exists an Fσδ set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Paradox and Potential Infinity.Charles McCarty - 2013 - Journal of Philosophical Logic 42 (1):195-219.
    We describe a variety of sets internal to models of intuitionistic set theory that (1) manifest some of the crucial behaviors of potentially infinite sets as described in the foundational literature going back to Aristotle, and (2) provide models for systems of predicative arithmetic. We close with a brief discussion of Church’s Thesis for predicative arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Theorems of Gödel and Kreisel: Completeness and Markov's Principle.D. C. McCarty - 1994 - Notre Dame Journal of Formal Logic 35 (1):99-107.
    In 1957, Gödel proved that completeness for intuitionistic predicate logic HPL implies forms of Markov's Principle, MP. The result first appeared, with Kreisel's refinements and elaborations, in Kreisel. Featuring large in the Gödel-Kreisel proofs are applications of the axiom of dependent choice, DC. Also in play is a form of Herbrand's Theorem, one allowing a reduction of HPL derivations for negated prenex formulae to derivations of negations of conjunctions of suitable instances. First, we here show how to deduce Gödel's results (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations