Switch to: References

Add citations

You must login to add citations.
  1. Are There Really Instantaneous Velocities?Frank Arntzenius - 2000 - The Monist 83 (2):187-208.
    Zeno argued that since at any instant an arrow does not change its location, the arrow does not move at any time, and hence motion is impossible. I discuss the following three views that one could take in view of Zeno's argument:(i) the "at-at" theory, according to which there is no such thing as instantaneous velocity, while motion in the sense of the occupation of different locations at different times is possible,(ii) the "impetus" theory, according to which instantaneous velocities do (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • The meaning of category theory for 21st century philosophy.Alberto Peruzzi - 2006 - Axiomathes 16 (4):424-459.
    Among the main concerns of 20th century philosophy was that of the foundations of mathematics. But usually not recognized is the relevance of the choice of a foundational approach to the other main problems of 20th century philosophy, i.e., the logical structure of language, the nature of scientific theories, and the architecture of the mind. The tools used to deal with the difficulties inherent in such problems have largely relied on set theory and its “received view”. There are specific issues, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The uses and abuses of the history of topos theory.Colin Mclarty - 1990 - British Journal for the Philosophy of Science 41 (3):351-375.
    The view that toposes originated as generalized set theory is a figment of set theoretically educated common sense. This false history obstructs understanding of category theory and especially of categorical foundations for mathematics. Problems in geometry, topology, and related algebra led to categories and toposes. Elementary toposes arose when Lawvere's interest in the foundations of physics and Tierney's in the foundations of topology led both to study Grothendieck's foundations for algebraic geometry. I end with remarks on a categorical view of (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Foundations as truths which organize mathematics.Colin Mclarty - 2013 - Review of Symbolic Logic 6 (1):76-86.
    The article looks briefly at Fefermans own foundations. Among many different senses of foundations, the one that mathematics needs in practice is a recognized body of truths adequate to organize definitions and proofs. Finding concise principles of this kind has been a huge achievement by mathematicians and logicians. We put ZFC and categorical foundations both into this context.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Against Pointillisme about Geometry.Jeremy Butterfield - 2006 - In Friedrich Stadler & Michael Stöltzner (eds.), Time and History: Proceedings of the 28. International Ludwig Wittgenstein Symposium, Kirchberg Am Wechsel, Austria 2005. Frankfurt, Germany: De Gruyter. pp. 181-222.
    This paper forms part of a wider campaign: to deny pointillisme. That is the doctrine that a physical theory's fundamental quantities are defined at points of space or of spacetime, and represent intrinsic properties of such points or point-sized objects located there; so that properties of spatial or spatiotemporal regions and their material contents are determined by the point-by-point facts. More specifically, this paper argues against pointillisme about the structure of space and-or spacetime itself, especially a paper by Bricker (1993). (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The three arrows of Zeno.Craig Harrison - 1996 - Synthese 107 (2):271 - 292.
    We explore the better known paradoxes of Zeno including modern variants based on infinite processes, from the point of view of standard, classical analysis, from which there is still much to learn (especially concerning the paradox of division), and then from the viewpoints of non-standard and non-classical analysis (the logic of the latter being intuitionist).The standard, classical or Cantorian notion of the continuum, modeled on the real number line, is well known, as is the definition of motion as the time (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations