Switch to: References

Add citations

You must login to add citations.
  1. Δ1 Ultrapowers are totally rigid.T. G. McLaughlin - 2007 - Archive for Mathematical Logic 46 (5-6):379-384.
    Hirschfeld and Wheeler proved in 1975 that ∑1 ultrapowers (= “simple models”) are rigid; i.e., they admit no non-trivial automorphisms. We later noted, essentially mimicking their technique, that the same is true of Δ1 ultrapowers (= “Nerode semirings”), a class of models of Π2 Arithmetic that overlaps, but is mutually non-inclusive with, the class of Σ1 ultrapowers. Hirschfeld and Wheeler left as open the question whether some Σ1 ultrapowers might admit proper isomorphic self-injections. We do not answer that question; but (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Recursive ultrapowers, simple models, and cofinal extensions.T. G. McLaughlin - 1992 - Archive for Mathematical Logic 31 (4):287-296.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cohesive powers of structures.Valentina Harizanov & Keshav Srinivasan - 2024 - Archive for Mathematical Logic 63 (5):679-702.
    A cohesive power of a structure is an effective analog of the classical ultrapower of a structure. We start with a computable structure, and consider its effective power over a cohesive set of natural numbers. A cohesive set is an infinite set of natural numbers that is indecomposable with respect to computably enumerable sets. It plays the role of an ultrafilter, and the elements of a cohesive power are the equivalence classes of certain partial computable functions determined by the cohesive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Polynomial time ultrapowers and the consistency of circuit lower bounds.Jan Bydžovský & Moritz Müller - 2020 - Archive for Mathematical Logic 59 (1-2):127-147.
    A polynomial time ultrapower is a structure given by the set of polynomial time computable functions modulo some ultrafilter. They model the universal theory \ of all polynomial time functions. Generalizing a theorem of Hirschfeld :111–126, 1975), we show that every countable model of \ is isomorphic to an existentially closed substructure of a polynomial time ultrapower. Moreover, one can take a substructure of a special form, namely a limit polynomial time ultrapower in the classical sense of Keisler Ultrafilters across (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Eight problems about nerode semirings.T. G. McLaughlin - 1992 - Annals of Pure and Applied Logic 56 (1-3):137-146.
    Several problems that pertain to certain arithmetically well-behaved countable subsemirings of Λ, the semiring of isols, are discussed. This is relevant to the present volume memorializing the late John Myhill, in that Myhill was an early co-developer of the theory of Λ.
    Download  
     
    Export citation  
     
    Bookmark  
  • Some observations on the substructure lattice of a 1 ultrapower.Thomas G. McLaughlin - 2010 - Mathematical Logic Quarterly 56 (3):323-330.
    Given a Δ1 ultrapower ℱ/[MATHEMATICAL SCRIPT CAPITAL U], let ℒU denote the set of all Π2-correct substructures of ℱ/[MATHEMATICAL SCRIPT CAPITAL U]; i.e., ℒU is the collection of all those subsets of |ℱ/[MATHEMATICAL SCRIPT CAPITAL U]| that are closed under computable functions. Defining in the obvious way the lattice ℒ) with domain ℒU, we obtain some preliminary results about lattice embeddings into – or realization as – an ℒ. The basis for these results, as far as we take the matter, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Existentially Incomplete Tame Models and a Conjecture of Ellentuck.Thomas G. McLaughlin - 1999 - Mathematical Logic Quarterly 45 (2):189-202.
    We construct a recursive ultrapower F/U such that F/U is a tame 1-model in the sense of [6, §3] and FU is existentially incomplete in the models of II2 arithmetic. This enables us to answer in the negative a question about closure with respect to recursive fibers of certain special semirings Γ of isols termed tame models by Barback. Erik Ellentuck had conjuctured that all such semirings enjoy the closure property in question. Our result is that while many do, some (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A remark on pseudo proof systems and hard instances of the satisfiability problem.Jan Maly & Moritz Müller - 2018 - Mathematical Logic Quarterly 64 (6):418-428.
    We link two concepts from the literature, namely hard sequences for the satisfiability problem sat and so‐called pseudo proof systems proposed for study by Krajíček. Pseudo proof systems are elements of a particular nonstandard model constructed by forcing with random variables. We show that the existence of mad pseudo proof systems is equivalent to the existence of a randomized polynomial time procedure with a highly restrictive use of randomness which produces satisfiable formulas whose satisfying assignments are probably hard to find.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ramsey’s theorem for pairs, collection, and proof size.Leszek Aleksander Kołodziejczyk, Tin Lok Wong & Keita Yokoyama - 2023 - Journal of Mathematical Logic 24 (2).
    We prove that any proof of a [Formula: see text] sentence in the theory [Formula: see text] can be translated into a proof in [Formula: see text] at the cost of a polynomial increase in size. In fact, the proof in [Formula: see text] can be obtained by a polynomial-time algorithm. On the other hand, [Formula: see text] has nonelementary speedup over the weaker base theory [Formula: see text] for proofs of [Formula: see text] sentences. We also show that for (...)
    Download  
     
    Export citation  
     
    Bookmark