Switch to: References

Add citations

You must login to add citations.
  1. How the Many Worlds Interpretation brings Common Sense to Paradoxical Quantum Experiments.Kelvin J. McQueen & Lev Vaidman - 2020 - In Rik Peels, Jeroen de Ridder & René van Woudenberg (eds.), Scientific Challenges to Common Sense Philosophy. New York: Routledge. pp. 40-60.
    The many worlds interpretation of quantum mechanics (MWI) states that the world we live in is just one among many parallel worlds. It is widely believed that because of this commitment to parallel worlds, the MWI violates common sense. Some go so far as to reject the MWI on this basis. This is despite its myriad of advantages to physics (e.g. consistency with relativity theory, mathematical simplicity, realism, determinism, etc.). Here, we make the case that common sense in fact favors (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Everett Interpretation: Probability.Simon Saunders - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    The Everett interpretation of quantum mechanics divides naturally into two parts: first, the interpretation of the structure of the quantum state, in terms of branching, and second, the interpretation of this branching structure in terms of probability. This is the second of two reviews of the Everett interpretation, and focuses on probability. Branching processes are identified as chance processes, and the squares of branch amplitudes are chances. Since branching is emergent, physical probability is emergent as well.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Consciousness and the Collapse of the Wave Function.David J. Chalmers & Kelvin J. McQueen - 2022 - In Shan Gao (ed.), Consciousness and Quantum Mechanics. Oxford University Press, Usa.
    Does consciousness collapse the quantum wave function? This idea was taken seriously by John von Neumann and Eugene Wigner but is now widely dismissed. We develop the idea by combining a mathematical theory of consciousness (integrated information theory) with an account of quantum collapse dynamics (continuous spontaneous localization). Simple versions of the theory are falsified by the quantum Zeno effect, but more complex versions remain compatible with empirical evidence. In principle, versions of the theory can be tested by experiments with (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Everettian theory as pure wave mechanics plus a no-collapse probability postulate.Paul Tappenden - 2019 - Synthese 198 (7):6375-6402.
    Proposed derivations of the Born rule for Everettian theory are controversial. I argue that they are unnecessary but may provide justification for a simplified version of the Principal Principle. It’s also unnecessary to replace Everett’s idea that a subject splits in measurement contexts with the idea that subjects have linear histories which partition Many worlds? Everett, quantum theory, and reality, Oxford University Press, Oxford, pp 181–205, 2010; Wallace in The emergent multiverse, Oxford University Press, Oxford, 2012, Chapter 7; Wilson in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ontology of the wave function and the many-worlds interpretation.Lev Vaidman (ed.) - 2019 - Cambridge University Press, UK.
    It is argued that the many-worlds interpretation is by far the best interpretation of quantum mechanics. The key points of this view are viewing the wave functions of worlds in three dimensions and understanding probability through self-locating uncertainty.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • The Argument from Locality for Many Worlds Quantum Mechanics.Alyssa Ney - forthcoming - Journal of Philosophy.
    One motivation for preferring the many worlds interpretation of quantum mechanics over realist rivals, such as collapse and hidden variables theories, is that the interpretation is able to preserve locality (in the sense of no action at a distance) in a way these other theories cannot. The primary goal of this paper is to make this argument for the many worlds interpretation precise, in a way that does not rely on controversial assumptions about the metaphysics of many worlds.
    Download  
     
    Export citation  
     
    Bookmark  
  • Conquering Mount Everett: Branch-Counting Versus the Born Rule.Jake Khawaja - forthcoming - British Journal for the Philosophy of Science.
    Abstract: This paper develops and advocates a rule for assigning self-locating credences in quantum branching scenarios, called Indexed Branch-Counting. It is argued that Indexed Branch-Counting can be justified on both accuracy-theoretic grounds and on the grounds that it satisfies a requirement of exchangeability for probability assignments. Since Indexed Branch-Counting diverges from the Born Rule, this poses trouble for Everettian approaches to probability. The paper also addresses a common argument against branch-counting, namely that the rule is incoherent in light of putative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Everett’s Missing Postulate and the Born Rule.Per Arve - 2020 - Foundations of Physics 50 (7):665-692.
    Everett’s Relative State Interpretation has gained increasing interest due to the progress of understanding the role of decoherence. In order to fulfill its promise as a realistic description of the physical world, two postulates are formulated. In short they are for a system with continuous coordinates \, discrete variable j, and state \\), the density \=|\psi _j|^2\) gives the distribution of the location of the system with the respect to the variables \ and j; an equation of motion for the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Epistemic Separability and Everettian Branches: A Critique of Sebens and Carroll.Richard Dawid & Simon Friederich - 2022 - British Journal for the Philosophy of Science 73 (3):711-721.
    We discuss the proposal by Sebens and Carroll to derive the Born rule in Everettian quantum mechanics from a principle they call ‘ESP-QM’. We argue that the proposal fails: ESP-QM is not, as Sebens and Carroll argue, a ‘less general version’ of an independently plausible principle, ESP, and can only be motivated by the empirical success of quantum mechanics, including use of the Born rule. Therefore, ESP-QM cannot have the status of a meta-theoretical principle of reasoning and provides no viable (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • problema de incoherencia en la Interpretación de los Muchos Mundos de la Mecánica Cuántica.María Rubio Juan - 2023 - Human Review. International Humanities Review / Revista Internacional de Humanidades 16 (1):59-79.
    La Interpretación de los Muchos Mundos de la Mecánica Cuántica se enfrenta desde su origen al problema de cómo reconciliar la naturaleza probabilística de la teoría cuántica con una descripción determinista del Universo en la que todas las posibilidades se actualizan. En este trabajo se busca presentar la situación del problema a través de las soluciones propuestas por Lev Vaidman y David Deutsch y ponerlas en relación, además de plantear la probabilidad como un postulado epistemológico de acuerdo con su interpretación (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reformulating Bell's theorem: The search for a truly local quantum theory.Mordecai Waegell & Kelvin J. McQueen - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 70:39-50.
    The apparent nonlocality of quantum theory has been a persistent concern. Einstein et al. and Bell emphasized the apparent nonlocality arising from entanglement correlations. While some interpretations embrace this nonlocality, modern variations of the Everett-inspired many worlds interpretation try to circumvent it. In this paper, we review Bell's "no-go" theorem and explain how it rests on three axioms, local causality, no superdeterminism, and one world. Although Bell is often taken to have shown that local causality is ruled out by the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations