Switch to: References

Add citations

You must login to add citations.
  1. A new look at relational holism in quantum mechanics.Matteo Morganti - 2009 - Philosophy of Science 76 (5):1027--1038.
    Teller argued that violations of Bell’s inequalities are to be explained by interpreting quantum entangled systems according to ‘relational holism’, that is, by postulating that they exhibit irreducible (‘inherent’) relations. Teller also suggested a possible application of this idea to quantum statistics. However, the basic proposal was not explained in detail nor has the additional idea about statistics been articulated in further work. In this article, I reconsider relational holism, amending it and spelling it out as appears necessary for a (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Quantum World is not Built up from Correlations.Michael Seevinck - 2006 - Foundations of Physics 36 (10):1573-1586.
    It is known that the global state of a composite quantum system can be completely determined by specifying correlations between measurements performed on subsystems only. Despite the fact that the quantum correlations thus suffice to reconstruct the quantum state, we show, using a Bell inequality argument, that they cannot be regarded as objective local properties of the composite system in question. It is well known since the work of Bell, that one cannot have locally preexistent values for all physical quantities, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Weak Discernibility, Quantum Mechanics and the Generalist Picture.Matteo Morganti - 2008 - Facta Philosophica 10 (1/2):155--183.
    Saunders' recent arguments in favour of the weak discernibility of (certain) quantum particles seem to be grounded in the 'generalist' view that science only provides general descriptions of the worlIn this paper, I introduce the ‘generalist’ perspective and consider its possible justification and philosophical basis; and then look at the notion of weak discernibility. I expand on the criticisms formulated by Hawley (2006) and Dieks and Veerstegh (2008) and explain what I take to be the basic problem: that the properties (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quantum mechanics unscrambled.Jean-Michel Delhotel - 2014
    Is quantum mechanics about ‘states’? Or is it basically another kind of probability theory? It is argued that the elementary formalism of quantum mechanics operates as a well-justified alternative to ‘classical’ instantiations of a probability calculus. Its providing a general framework for prediction accounts for its distinctive traits, which one should be careful not to mistake for reflections of any strange ontology. The suggestion is also made that quantum theory unwittingly emerged, in Schrödinger’s formulation, as a ‘lossy’ by-product of a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Locality.Robert B. Griffiths - 2011 - Foundations of Physics 41 (4):705-733.
    It is argued that while quantum mechanics contains nonlocal or entangled states, the instantaneous or nonlocal influences sometimes thought to be present due to violations of Bell inequalities in fact arise from mistaken attempts to apply classical concepts and introduce probabilities in a manner inconsistent with the Hilbert space structure of standard quantum mechanics. Instead, Einstein locality is a valid quantum principle: objective properties of individual quantum systems do not change when something is done to another noninteracting system. There is (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Probabilities and Quantum Reality: Are There Correlata? [REVIEW]Robert B. Griffiths - 2003 - Foundations of Physics 33 (10):1423-1459.
    Any attempt to introduce probabilities into quantum mechanics faces difficulties due to the mathematical structure of Hilbert space, as reflected in Birkhoff and von Neumann's proposal for a quantum logic. The (consistent or decoherent) histories solution is provided by its single framework rule, an approach that includes conventional (Copenhagen) quantum theory as a special case. Mermin's Ithaca interpretation addresses the same problem by defining probabilities which make no reference to a sample space or event algebra (“correlations without correlata”). But this (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Unspeakable Transport-What Quantum Teleportation Might be, and What it More Probably is.Jean-Michel Delhôtel - 2021 - Foundations of Science 27 (2):527-548.
    A Controlled Not variant of the standard quantum teleportation protocol affords a step-by-step analysis of what is, or can be said to be, achieved in the process in either location. Dominant interpretations of what quantum teleportation consists in and implies are reviewed in this light. Being mindful of the statistical significance of the terms and operations involved, as well as awareness of classical analogies, can help sort out what is specifically quantum-mechanical, and what is not, in so-called teleportation. What the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Parts and wholes. An inquiry into quantum and classical correlations.M. P. Seevinck - unknown
    ** The primary topic of this dissertation is the study of the relationships between parts and wholes as described by particular physical theories, namely generalized probability theories in a quasi-classical physics framework and non-relativistic quantum theory. ** A large part of this dissertation is devoted to understanding different aspects of four different kinds of correlations: local, partially-local, no-signaling and quantum mechanical correlations. Novel characteristics of these correlations have been used to study how they are related and how they can be (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Taking Mermin's Relational Interpretation of QM Beyond Cabello's and Seevinck's No-Go Theorems.Christian de Ronde, Raimundo Fernández Mouján & Massri Cesar - unknown
    In this paper we address a deeply interesting debate that took place at the end of the last millennia between David Mermin, Adan Cabello and Michiel Seevinck, regarding the meaning of relationalism within quantum theory. In a series of papers, Mermin proposed an interpretation in which quantum correlations were considered as elements of physical reality. Unfortunately, the very young relational proposal by Mermin was too soon tackled by specially suited no-go theorems designed by Cabello and Seevinck. In this work we (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation