Switch to: References

Add citations

You must login to add citations.
  1. The finite model property for various fragments of intuitionistic linear logic.Mitsuhiro Okada & Kazushige Terui - 1999 - Journal of Symbolic Logic 64 (2):790-802.
    Recently Lafont [6] showed the finite model property for the multiplicative additive fragment of linear logic (MALL) and for affine logic (LLW), i.e., linear logic with weakening. In this paper, we shall prove the finite model property for intuitionistic versions of those, i.e. intuitionistic MALL (which we call IMALL), and intuitionistic LLW (which we call ILLW). In addition, we shall show the finite model property for contractive linear logic (LLC), i.e., linear logic with contraction, and for its intuitionistic version (ILLC). (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Admissible Rules and the Leibniz Hierarchy.James G. Raftery - 2016 - Notre Dame Journal of Formal Logic 57 (4):569-606.
    This paper provides a semantic analysis of admissible rules and associated completeness conditions for arbitrary deductive systems, using the framework of abstract algebraic logic. Algebraizability is not assumed, so the meaning and significance of the principal notions vary with the level of the Leibniz hierarchy at which they are presented. As a case study of the resulting theory, the nonalgebraizable fragments of relevance logic are considered.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Algebraic aspects of cut elimination.Francesco Belardinelli, Peter Jipsen & Hiroakira Ono - 2004 - Studia Logica 77 (2):209 - 240.
    We will give here a purely algebraic proof of the cut elimination theorem for various sequent systems. Our basic idea is to introduce mathematical structures, called Gentzen structures, for a given sequent system without cut, and then to show the completeness of the sequent system without cut with respect to the class of algebras for the sequent system with cut, by using the quasi-completion of these Gentzen structures. It is shown that the quasi-completion is a generalization of the MacNeille completion. (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The finite model property for BCI and related systems.Wojciech Buszkowski - 1996 - Studia Logica 57 (2-3):303 - 323.
    We prove the finite model property (fmp) for BCI and BCI with additive conjunction, which answers some open questions in Meyer and Ono [11]. We also obtain similar results for some restricted versions of these systems in the style of the Lambek calculus [10, 3]. The key tool is the method of barriers which was earlier introduced by the author to prove fmp for the product-free Lambek calculus [2] and the commutative product-free Lambek calculus [4].
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Variations on a Theme of Curry.Lloyd Humberstone - 2006 - Notre Dame Journal of Formal Logic 47 (1):101-131.
    After an introduction to set the stage, we consider some variations on the reasoning behind Curry's Paradox arising against the background of classical propositional logic and of BCI logic and one of its extensions, in the latter case treating the "paradoxicality" as a matter of nonconservative extension rather than outright inconsistency. A question about the relation of this extension and a differently described (though possibly identical) logic intermediate between BCI and BCK is raised in a final section, which closes with (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Finite Models of Some Substructural Logics.Wojciech Buszkowski - 2002 - Mathematical Logic Quarterly 48 (1):63-72.
    We give a proof of the finite model property of some fragments of commutative and noncommutative linear logic: the Lambek calculus, BCI, BCK and their enrichments, MALL and Cyclic MALL. We essentially simplify the method used in [4] for proving fmp of BCI and the Lambek ca culus and in [5] for proving fmp of MALL. Our construction of finite models also differs from that used in Lafont [8] in his proof of fmp of MALL.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Conservative Negation Extension of Positive Semilattice Logic Without the Finite Model Property.Yale Weiss - 2020 - Studia Logica 109 (1):125-136.
    In this article, I present a semantically natural conservative extension of Urquhart’s positive semilattice logic with a sort of constructive negation. A subscripted sequent calculus is given for this logic and proofs of its soundness and completeness are sketched. It is shown that the logic lacks the finite model property. I discuss certain questions Urquhart has raised concerning the decision problem for the positive semilattice logic in the context of this logic and pose some problems for further research.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Algebraizability of the Implicational Fragment of Abelian Logic.Sam Butchart & Susan Rogerson - 2014 - Studia Logica 102 (5):981-1001.
    In this paper we consider the implicational fragment of Abelian logic \ . We show that although the Abelian groups provide an semantics for the set of theorems of \ they do not for the associated consequence relation. We then show that the consequence relation is not algebraizable in the sense of Blok and Pigozzi . In the second part of the paper, we investigate an extension of \ in the same language and having the same set of theorems and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Angell and McCall Meet Wansing.Hitoshi Omori & Andreas Kapsner - 2024 - Studia Logica 112 (1):141-165.
    In this paper, we introduce a new logic, which we call AM3. It is a connexive logic that has several interesting properties, among them being strongly connexive and validating the Converse Boethius Thesis. These two properties are rather characteristic of the difference between, on the one hand, Angell and McCall’s CC1 and, on the other, Wansing’s C. We will show that in other aspects, as well, AM3 combines what are, arguably, the strengths of both CC1 and C. It also allows (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Editorial introduction.Wojciech Buszkowski & Michael Moortgat - 2002 - Studia Logica 71 (3):261-275.
    Download  
     
    Export citation  
     
    Bookmark  
  • On Finite Models of the Lambek Calculus.Maciej Farulewski - 2005 - Studia Logica 80 (1):63-74.
    We study a class of finite models for the Lambek Calculus with additive conjunction and with and without empty antecedents. The class of models enables us to prove the finite model property for each of the above systems, and for some axiomatic extensions of them. This work strengthens the results of [3] where only product-free fragments of these systems are considered. A characteristic feature of this approach is that we do not rely on cut elimination in opposition to e.g. [5], (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation